Publications by authors named "Feibing Xiong"

High-efficiency extraction of long single-wall carbon nanotubes (SWCNTs) with excellent optoelectronic properties from SWCNT solution is critical for enabling their application in high-performance optoelectronic devices. Here, a straightforward and high-efficiency method is reported for length separation of SWCNTs by modulating the concentrations of binary surfactants. The results demonstrate that long SWCNTs can spontaneously precipitate for binary-surfactant but not for single-surfactant systems.

View Article and Find Full Text PDF

Halide segregation is a critical bottleneck that hampers the application of mixed-halide perovskite nanocrystals (NCs) in both electroluminescent and down-conversion red-light-emitting diodes. Herein, we report a strategy that combines precursor and surface engineering to obtain pure-red-emitting (peaked at 624 nm) NCs with a photoluminescence quantum yield of up to 92% and strongly suppresses the halide segregation of mixed-halide NCs under light irradiation. Red-light-emitting diodes (LED) using these mixed-halide NCs as phosphors exhibit color-stable emission with a negligible peak shift and spectral broadening during operation over 240 min.

View Article and Find Full Text PDF

The automatic diagnosis of various retinal diseases based on fundus images is important in supporting clinical decision-making. Convolutional neural networks (CNNs) have achieved remarkable results in such tasks. However, their high expression ability possibly leads to overfitting.

View Article and Find Full Text PDF

In this work, hafnium oxide (HfO) thin films are deposited on p-type Si substrates by remote plasma atomic layer deposition on p-type Si at 250 °C, followed by a rapid thermal annealing in nitrogen. Effect of post-annealing temperature on the crystallization of HfO films and HfO/Si interfaces is investigated. The crystallization of the HfO films and HfO/Si interface is studied by field emission transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and atomic force microscopy.

View Article and Find Full Text PDF

Hafnium oxide (HfO) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system.

View Article and Find Full Text PDF

We report a continuous-wave dual-wavelength Nd:YAG laser at 1052 and 1073 nm, for the first time to the best of our knowledge, in free-running mode. The maximum output power reaches 6.64 W with slope efficiency of about 42.

View Article and Find Full Text PDF

The influence of particulates on sapphire fiber evanescent wave absorption by water has been studied. Suspensions containing micro-sized graphite flakes and glassy carbon powder were used. Conventional free-space transmittance measurements of these samples showed strong absorption and scattering, which severely screened the absorption by water.

View Article and Find Full Text PDF