Publications by authors named "FeiFan Lin"

The increasing prevalence and persistence of nanoplastics (NPs) have become critical environmental concerns. These particles have the potential to enter the food chain and accumulate in living organisms, which exerts their adverse effects on human health. The release of nanoparticles from feeding bottles raises concerns about potential health issues, especially for newborns exposed to NPs at the neonatal stage.

View Article and Find Full Text PDF

Background: Ratoon rice cropping has been shown to provide new insights into overcoming the current challenges of rice production in southern China. However, the potential mechanisms impacting yield and grain quality under rice ratooning remain unclear.

Methods: In this study, changes in yield performance and distinct improvements in grain chalkiness in ratoon rice were thoroughly investigated, using physiological, molecular and transcriptomic analysis.

View Article and Find Full Text PDF

Background: Ratoon rice cropping has been introduced for increased rice production in southern China and, as a result, has been becoming increasingly popular. However, only a few studies have addressed the regulatory mechanism underlying grain quality improvement induced by rice ratooning.

Results: In this study, parameters of rice quality, including head rice yield, chalky grain percentage, grain chalkiness degree, hardness and taste value, were shown to be much improved in the ratooning season rice as compared to its counterparts main and late cropping season rice, indicating that such an improvement was irrespective of seasonal effects.

View Article and Find Full Text PDF

Many actual industrial production processes are dynamic and uncertain. When uncertain information are described by subjective experience and experts' knowledge based on scanty or vague information, fuzzy uncertainty exists. Fuzzy chance-constrained dynamic programming are applicable to industrial production modeling accompanied by fuzzy uncertainty and dynamics, where constraints need not or cannot be completely satisfied.

View Article and Find Full Text PDF

Root-pathogen interactions influence premature senescence in rice, however, few studies have addressed the underlying mechanism. In this study, when premature senescence significantly occurred in the osvha-a1 mutant (loss of tonoplast H+-ATPase activity), the relative abundance of rhizospheric bacterial communities was similar between the mutant and its wild type, while the fungi in the rhizosphere of the osvha-a1 mutant significantly differed from the wild type. Furthermore, one key fungal strain in the rhizospheric soil of the osvha-a1 mutant, Gibberella intermedia, increased substantially during the late growing phase, resulting in severe accumulation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Generally, plant roots shape the rhizosphere fungal community but how individual plant genes involved in senescence affect this shaping is less studied. We used an early senescence leaf (esl) mutant rice and compared it with its isogenic wild type variety to evaluate the effect of the vacuolar H-ATPase (VHA-A1) gene mutation on the rhizosphere fungal community structure and composition using a metagenomic pyrosequencing approach. The most predominate fungal phyla identified for both isogenic lines belonged to Ascomycota, Basidiomycota and Glomeromycota, where Ascomycota were more prevalent in the esl mutant than the wild type variety.

View Article and Find Full Text PDF