Stable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains.
View Article and Find Full Text PDFZeolites are microporous silicates with a large variety of applications as catalysts, adsorbents, and cation exchangers. Stable silica-based zeolites with increased porosity are in demand to allow adsorption and processing of large molecules but challenge our synthetic ability. We report a new, highly stable pure silica zeolite called ZEO-3, which has a multidimensional, interconnected system of extra-large pores open through windows made by 16 and 14 silicate tetrahedra, the least dense polymorph of silica known so far.
View Article and Find Full Text PDFZeolites are crystalline porous materials with important industrial applications, including uses in catalytic and adsorption-separation processes. Access into and out of their inner confined space, where adsorption and reactions occur, is limited by their pore apertures. Stable multidimensional zeolites with larger pores able to process larger molecules are in demand in the fine chemical industry and for the oil processing on which the world still relies for fuels.
View Article and Find Full Text PDFThe new zeolite NUD-3 possesses a three-dimensional system of large pore channels that is topologically identical to those of ITQ-21 and PKU-14. However, the three zeolites have distinctly different frameworks: a particular single 4-membered ring inside the denser portion of the zeolite is missing in PKU-14, disordered in ITQ-21 and fully ordered in NUD-3. We document these differences and use molecular simulations to unravel the mechanism by which a particular structure directing agent dication, 1,1'-(1,2-phenylenebis(methylene))bis(3-methylimidazolium), is able to orient this inner ring.
View Article and Find Full Text PDFExtra-large-pore zeolites for processing large molecules have long been sought after by both the academia and industry. However, the synthesis of these materials, particularly extra-large-pore pure silica zeolites, remains a big challenge. Herein we report the synthesis of a new extra-large-pore silica zeolite, designated NUD-6, by using an easily synthesized aromatic organic cation as structure-directing agent.
View Article and Find Full Text PDFThe development of inorganic frameworks with extra-large pores (larger than 12-membered rings) has attracted considerable attention because of their potential applications in catalysis, the separation of large molecules, and so forth. We herein report the synthesis of the new extra-large-pore zeolite NUD-2 by using the supramolecular self-assembly of simple aromatic organic cations as structure-directing agents (SDAs). NUD-2 is a high-silicon-content germanosilicate with interconnecting 14×10-membered-ring channels.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2014
Zeolites with extra-large pores have attracted great attention because of their important applications such as in hydrocracking, catalysis, and separation of large molecules. Despite much progress has been made during the past decades, the synthesis of these materials remains a big challenge. A new extra-large-pore zeolite NUD-1 (Nanjing University Du's group zeolite no.
View Article and Find Full Text PDF