Mutations in the Lmod3 gene have been identified as a genetic cause of nemaline myopathy. However, the mechanism underlying this disease and the function of Lmod3 remain largely unknown. In this study, we found that Lmod3 knockdown in C2C12 cells impaired myoblast differentiation, whereas enforced Lmod3 expression enhanced such differentiation.
View Article and Find Full Text PDFAlthough previous studies indicated that cumulus cells (CCs) accelerate oocyte aging by releasing soluble factors, the factors have yet to be characterized. While demonstrating that CCs promoted oocyte aging by releasing soluble Fas ligand (sFasL), our recent study suggested that CCs might secrete other factors to mediate oocyte aging as well. This study tested whether CCs accelerate oocyte aging by secreting tumor necrosis factor (TNF)-α.
View Article and Find Full Text PDFCell Death Dis
February 2018
Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging.
View Article and Find Full Text PDFAging (Albany NY)
February 2016
In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations.
View Article and Find Full Text PDF