Collective animal behavior occurs in groups and swarms at almost every biological scale, from single-celled organisms to the largest animals on Earth. The intriguing mysteries behind these group behaviors have attracted many scholars, and while it is known that models can reproduce qualitative features of such complex behaviors, this requires data from real animals to demonstrate, and obtaining data on the exact features of these groups is tricky. In this paper, we propose the Hidden Markov Unscented Tracker (HMUT), which combines the state prediction capability of HMM and the high-precision nonlinear processing capability of UKF.
View Article and Find Full Text PDF