J Transl Autoimmun
June 2025
Autoimmune rheumatic diseases (ARDs) are a heterogeneous group of conditions characterized by excessive and misdirected immune responses against the body's own musculoskeletal tissues. Their exact aetiology remains unclear, with genetic, demographic, behavioural and environmental factors implicated in disease onset. One prominent hypothesis for the initial breach of immune tolerance (leading to autoimmunity) is molecular mimicry, which describes structural or sequence similarities between human and microbial proteins (mimotopes).
View Article and Find Full Text PDFBackground: Elevated systemic antibody responses against gut microbiota flagellins are observed in both Crohn's disease (CD) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting potential serological biomarkers for diagnosis. However, flagellin-specific antibody repertoires and functional roles in the diseases remain incompletely understood. Bacterial flagellins can be categorized into three types depending on their interaction with toll-like receptor 5 (TLR5): (1) "stimulator" and (2) "silent" flagellins, which bind TLR5 through a conserved N-terminal motif, with only stimulators activating TLR5 (involving a C-terminal domain); (3) "evader" flagellins of pathogens, which entirely circumvent TLR5 activation via mutations in the N-terminal TLR5 binding motif.
View Article and Find Full Text PDFRhodobacter capsulatus fixes atmospheric dinitrogen via two nitrogenases, Mo- and Fe-nitrogenase, which operate under different conditions. Here, we describe the functions in nitrogen fixation and regulation of the rcc00574 (cooA) and rcc00575 (cowN) genes, which are located upstream of the structural genes of Mo-nitrogenase, nifHDK. Disruption of cooA or cowN specifically impaired Mo-nitrogenase-dependent growth at carbon monoxide (CO) concentrations still tolerated by the wild type.
View Article and Find Full Text PDFRhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated by the wild type, thus demonstrating the importance of FdxD under semiaerobic conditions. In contrast, FdxD was not beneficial for diazotrophic growth depending on Fe-nitrogenase.
View Article and Find Full Text PDFPeriprosthetic fractures are a challenging problem in view of the demographic development and the increasing number of implanted prostheses. Most of these fractures occur postoperatively after a period of two to four years after implantation of a total knee arthroplasty. They are usually caused by traumata, implantation-specific factors and loosening of the prosthesis.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2011
The LysR-type regulator MopB represses transcription of several target genes (including the nitrogen-fixation gene anfA) in Rhodobacter capsulatus at high molybdenum concentrations. In this study, the isolated DNA-binding domain of MopB (MopBHTH) was overexpressed in Escherichia coli. Purified MopBHTH bound the anfA promoter as shown by DNA mobility-shift assays, demonstrating the function of the isolated regulator domain.
View Article and Find Full Text PDFSince microvascular dysfunction with complete circulatory arrest and, thus, prolongation of tissue ischaemia is considered a potential mechanism for cell necrosis following hepatic cryosurgery, we determined the temperature necessary for induction of complete nutritive perfusion failure in cryothermia-treated rat livers. After localization of the cryoprobe with seven thermocouples and application of a single or double freeze-thaw cycle, in vivo fluorescence microscopy of the cryoinjured left lobe was performed over a 2-h period using a computer-controlled stepping motor, which guaranteed analysis of the identical liver tissue segments with exact allocation of the thermocouples and thus determination of tissue temperature. Cryothermia resulted in a central non-perfused part of injury, surrounded by a heterogeneously perfused peripheral zone.
View Article and Find Full Text PDFTo elucidate the hepatic microvascular response to cryothermia, we studied the liver microcirculation of Sprague-Dawley rats after one and two 4-minute freeze-thaw cycles using intravital fluorescence microscopy. Irrespective of the number of freeze-thaw cycles applied, the nature of hepatic microvascular injury was characterized by complete stasis of sinusoidal blood flow within the central part of the cryolesions and heterogeneous sinusoidal perfusion in a critically perfused border zone located at the periphery of the lesions. Analysis over time (2 hours) revealed a successive shutdown of sinusoidal perfusion within this critically perfused border zone, which was caused by intravascularly lodging cell aggregates, blocking the lumen of individual sinusoids.
View Article and Find Full Text PDFPhys Rev B Condens Matter
March 1987