The sexual maturity status of animals in nonclinical safety studies can have a significant impact on the microscopic assessment of the reproductive system, the interpretation of potential test article-related findings, and ultimately the assessment of potential risk to humans. However, the assessment and documentation of sexual maturity for animals in nonclinical safety studies is not conducted in a consistent manner across the pharmaceutical and chemical industries. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology convened an international working group of pathologists and nonclinical safety scientists with expertise in the reproductive system, pathology nomenclature, and Standard for Exchange of Nonclinical Data requirements.
View Article and Find Full Text PDFCommon approaches to scale-down freeze-thaw systems are based on matching time-temperature profiles at corresponding points; however, little is known about the differences in anisotropy between the 2 scales. In this work, computational fluid dynamics modeling was used to investigate these differences. The modeling of the convective flow of the liquid phase within ice porous structure and volume expansion caused by freezing enabled accurate prediction of the local temperature and composition, for evaluation of potential stresses on protein stability, such as cryoconcentration and time in the nonideal environment.
View Article and Find Full Text PDFA public workshop entitled "Challenges and strategies to facilitate formulation development of pediatric drug products" focused on current status and gaps as well as recommendations for risk-based strategies to support the development of pediatric age-appropriate drug products. Representatives from industry, academia, and regulatory agencies discussed the issues within plenary, panel, and case-study breakout sessions. By enabling practical and meaningful discussion between scientists representing the diversity of involved disciplines (formulators, nonclinical scientists, clinicians, and regulators) and geographies (eg, US, EU), the Excipients Safety workshop session was successful in providing specific and key recommendations for defining paths forward.
View Article and Find Full Text PDFTuberoinfundibular peptide of 39 residues (TIP39) is synthesized by two groups of neurons, one in the subparafascicular area at the caudal end of the thalamus and the other in the medial paralemniscal nucleus within the lateral brainstem. The subparafascicular TIP39 neurons project to a number of brain regions involved in emotional responses, and these regions contain a matching distribution of a receptor for TIP39, the parathyroid hormone 2 receptor (PTH2-R). We have now evaluated the involvement of TIP39 in anxiety-related behaviors using mice with targeted null mutation of the TIP39 gene (Tifp39).
View Article and Find Full Text PDFRecent work in our laboratories has demonstrated that an opioid-independent form of stress-induced analgesia (SIA) is mediated by endogenous cannabinoids [Hohmann et al., 2005. Nature 435, 1108].
View Article and Find Full Text PDFThe functions of 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid found in the brain, remain largely unknown. Here we show that two previously unknown inhibitors of monoacylglycerol lipase, a presynaptic enzyme that hydrolyzes 2-AG, increase 2-AG levels and enhance retrograde signaling from pyramidal neurons to GABAergic terminals in the hippocampus. These results establish a role for 2-AG in synaptic plasticity and point to monoacylglycerol lipase as a possible drug target.
View Article and Find Full Text PDFActivation of group I metabotropic glutamate (mGlu) receptors drives the endocannabinoid system to cause both short- and long-term changes of synaptic strength in the striatum, hippocampus, and other brain areas. Although there is strong electrophysiological evidence for a role of endocannabinoid release in mGlu receptor-dependent plasticity, the identity of the endocannabinoid transmitter mediating this phenomenon remains undefined. In this study, we show that activation of group I mGlu receptors triggers the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), but not anandamide, in primary cultures of corticostriatal and hippocampal slices prepared from early postnatal rat brain.
View Article and Find Full Text PDFAcute stress suppresses pain by activating brain pathways that engage opioid or non-opioid mechanisms. Here we show that an opioid-independent form of this phenomenon, termed stress-induced analgesia, is mediated by the release of endogenous marijuana-like (cannabinoid) compounds in the brain. Blockade of cannabinoid CB(1) receptors in the periaqueductal grey matter of the midbrain prevents non-opioid stress-induced analgesia.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) is an intracellular serine enzyme that catalyzes the hydrolysis of bioactive fatty acid ethanolamides such as anandamide and oleoylethanolamide (OEA). Genetic deletion of the faah gene in mice elevates brain anandamide levels and amplifies the effects of this endogenous cannabinoid agonist. Here, we show that systemic administration of the selective FAAH inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester; 0.
View Article and Find Full Text PDFThe endogenous cannabinoid anandamide is removed from the synaptic space by a high-affinity transport system present in neurons and astrocytes, which is inhibited by N-(4-hydroxyphenyl)-arachidonamide (AM404). After internalization, anandamide is hydrolyzed by fatty-acid amide hydrolase (FAAH), an intracellular membrane-bound enzyme that also cleaves AM404. Based on kinetic evidence, it has recently been suggested that anandamide internalization may be mediated by passive diffusion driven by FAAH activity.
View Article and Find Full Text PDFThe psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol, produces in humans subjective responses mediated by CB1 cannabinoid receptors, indicating that endogenous cannabinoids may contribute to the control of emotion. But the variable effects of Delta(9)-tetrahydrocannabinol obscure the interpretation of these results and limit the therapeutic potential of direct cannabinoid agonists. An alternative approach may be to develop drugs that amplify the effects of endogenous cannabinoids by preventing their inactivation.
View Article and Find Full Text PDF