Publications by authors named "Feduska J"

Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic cells. There is a need for the development of novel antigen-specific strategies to delay cell destruction, including combinatorial strategies that do not elicit systemic immunosuppression. Gamma-aminobutyric acid (GABA) is expressed by immune cells, β-cells, and gut bacteria and is immunomodulatory.

View Article and Find Full Text PDF

Pancreatic β-cell mass expands during pregnancy and regresses in the postpartum period in conjunction with dynamic metabolic demands on maternal glucose homeostasis. To understand transcriptional changes driving these adaptations in β-cells and other islet cell types, we performed single-cell RNA sequencing on islets from virgin, late gestation, and early postpartum mice. We identified transcriptional signatures unique to gestation and the postpartum in β-cells, including induction of the AP-1 transcription factor subunits and other genes involved in the immediate-early response (IEGs).

View Article and Find Full Text PDF

Efficient T cell activation and effector responses require an antigenic peptide presented on the MHC complex to the TCR (signal 1), costimulatory molecule interactions between T cells and APCs (signal 2), and the synthesis of innate immune-derived proinflammatory cytokines and reactive oxygen species (signal 3). We previously demonstrated that the third signal dissipation impairs autoreactive T cell activation. In this study, we tested the hypothesis that encapsulation of Ag with an antioxidant-containing biomaterial would induce Ag-specific hyporesponsiveness.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic β-cells. While ultimately a T cell-mediated disease, macrophages play an indispensable role in disease initiation and progression. Infiltrating macrophages generate an inflammatory environment by releasing NADPH oxidase-derived superoxide and proinflammatory cytokines.

View Article and Find Full Text PDF

Bone fractures heal with overlapping phases of inflammation, cell proliferation, and bone remodeling. Osteogenesis and angiogenesis work in concert to control many stages of this process, and when one is impaired it leads to failure of bone healing, termed a nonunion. During fracture repair, there is an infiltration of immune cells at the fracture site that not only mediate the inflammatory responses, but we hypothesize they also exert influence on neovasculature.

View Article and Find Full Text PDF

Progressive metastatic disease is a major cause of mortality for patients diagnosed with multiple types of solid tumors. One of the long-term goals of our laboratory is to identify  molecular interactions that regulate metastasis, as a basis for developing agents that inhibit this process. Toward this goal, we recently demonstrated that intercellular adhesion molecule-2 (ICAM-2) converted neuroblastoma (NB) cells from a metastatic to a non-metastatic phenotype, a previously unknown function for ICAM-2.

View Article and Find Full Text PDF

Background: Cell adhesion molecules (CAMs) are expressed ubiquitously. Each of the four families of CAMs is comprised of glycosylated, membrane-bound proteins that participate in multiple cellular processes including cell-cell communication, cell motility, inside-out and outside-in signaling, tumorigenesis, angiogenesis and metastasis. Intercellular adhesion molecule-2 (ICAM-2), a member of the immunoglobulin superfamily of CAMs, has six N-linked glycosylation sites at amino acids (asparagines) 47, 82, 105, 153, 178 and 187.

View Article and Find Full Text PDF

With ageing, there is a loss of adult stem cell function. However, there is no direct evidence that this has a causal role in ageing-related decline. We tested this using muscle-derived stem/progenitor cells (MDSPCs) in a murine progeria model.

View Article and Find Full Text PDF

Muscle-derived stem cells (MDSCs) isolated from murine skeletal tissue by the preplate method have displayed the capability to commit to the myogenic lineage and regenerate more efficiently than myoblasts in skeletal and cardiac muscle in murine Duchenne Muscular Dystrophy mice (mdx). However, until now, these studies have not been translated to human muscle cells. Here, we describe the isolation, by a preplate technique, of candidate human MDSCs, which exhibit myogenic and regenerative characteristics similar to their murine counterparts.

View Article and Find Full Text PDF

We have isolated a population of muscle-derived stem cells (MDSCs) that, when compared with myoblasts, display an improved regeneration capacity, exhibit better cell survival, and improve myogenesis and angiogenesis. In addition, we and others have observed that the origin of the MDSCs may reside within the blood vessel walls (endothelial cells and pericytes). Here, we investigated the role of vascular endothelial growth factor (VEGF)-mediated angiogenesis in MDSC transplantation-based skeletal muscle regeneration in mdx mice (an animal model of muscular dystrophy).

View Article and Find Full Text PDF

This protocol details a procedure, known as the modified preplate technique, which is currently used in our laboratory to isolate muscle cells on the basis of selective adhesion to collagen-coated tissue culture plates. By employing this technique to murine skeletal muscle, we have been able to isolate a rapidly adhering cell (RAC) fraction within the earlier stages of the process, whereas a slowly adhering cell (SAC) fraction containing muscle-derived stem cells is obtained from the later stages of the process. This protocol outlines the methods and materials needed to isolate RAC and SAC populations from murine skeletal muscle.

View Article and Find Full Text PDF

We have shown that muscle-derived stem cells (MDSCs) transplanted into dystrophic (mdx) mice efficiently regenerate skeletal muscle. However, MDSC populations exhibit heterogeneity in marker profiles and variability in regeneration abilities. We show here that cell sex is a variable that considerably influences MDSCs' regeneration abilities.

View Article and Find Full Text PDF