In this work, Fe2O3 was investigated as a doping agent for poly(methyl methacrylate) (PMMA) in order to enhance the plasmonic effect in sensors based on D-shaped plastic optical fibers (POFs). The doping procedure consists of immerging a premanufactured POF sensor chip in an iron (III) solution, avoiding repolymerization and its related disadvantages. After treatment, a sputtering process was used to deposit a gold nanofilm on the doped PMMA in order to obtain the surface plasmon resonance (SPR).
View Article and Find Full Text PDFGraphene-based materials have demonstrated high chemical stability and are very promising for protection against the corrosion of metal surfaces. For this reason, in this work, protective layers composed of graphene oxide, reduced graphene oxide and their mixtures were investigated, respectively, against the corrosion of the surface of lead induced by water drops. The materials were deposited on a Pb surface from their suspensions using a Meyer rod.
View Article and Find Full Text PDF