Publications by authors named "Fedotov A"

Expansive soils, prone to significant volume changes with moisture fluctuations, challenge engineering infrastructure due to their swelling and shrinking. Traditional stabilization methods, including mechanical and chemical treatments, often have high material and environmental costs. This study explores fibrous by-products of flax processing, a sustainable alternative, for reinforcing expansive clay soil.

View Article and Find Full Text PDF

The study of human neural cells, their behaviour and migration are important areas of research in the biomedical field, particularly for potential therapeutic applications. The safety of using neural cells in therapy is still a concern due to a lack of information on long-term changes that may occur. While current methods of cell tracing explore gene manipulations, we elaborate approaches to cell marking with no genetic interference.

View Article and Find Full Text PDF

Thermogenetics is a promising neuromodulation technique based on the use of heat-sensitive ion channels. However, on the way to its clinical application, a number of questions have to be addressed. First, to avoid immune response in future human applications, human ion channels should be studied as thermogenetic actuators.

View Article and Find Full Text PDF

In this Letter, we report a first, to the best of our knoqledge, experimental realization of a bright ultra-broadband (180 THz) fiber-based biphoton source with widely spectrally separated signal and idler photons. Such a two-photon source is realized due to the joint use of a broadband two-loop phase-matching of interacting light waves and high optical nonlinearity of a silica-core photonic crystal fiber. The high performance of the developed fiber source identifies it as an important and useful tool for a wide range of optical quantum applications.

View Article and Find Full Text PDF

X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 10 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses.

View Article and Find Full Text PDF

We propose a concept for generation of ultrashort pulses based on transient field-induced plasmonic resonance in nanoparticle composites. Photoionization and free-carrier plasma generation change the susceptibility of nanoparticles on a few-femtosecond scale under the action of the pump pulse. This opens a narrow time window when the system is in plasmonic resonance, which is accompanied by a short burst of the local field.

View Article and Find Full Text PDF

We demonstrate label-free imaging of genetically induced hepatocellular carcinoma (HCC) in a murine model provided by two- and three-photon fluorescence microscopy of endogenous fluorophores excited at the central wavelengths of 790, 980 and 1250 nm and reinforced by second and third harmonic generation microscopy. We show, that autofluorescence imaging presents abundant information about cell arrangement and lipid accumulation in hepatocytes and hepatic stellate cells (HSCs), harmonics generation microscopy provides a versatile tool for fibrogenesis and steatosis study. Multimodal images may be performed by a single ultrafast laser source at 1250 nm falling in tissue transparency window.

View Article and Find Full Text PDF

The influence of the carrier-envelope phase (CEP) of a pump pulse on the multioctave supercontinuum (SC) generation in a gas-filled anti-resonant hollow-core fiber (AR HCF) by soliton self-compression (SSC) has been explored. We have shown an octave-wide third harmonic generation (THG) in the visible-to-near-infrared range during the pulse compression down to a sub-cycle duration. The CEP of a multi-cycle pump pulse provides control of interference between the third harmonic (TH) and the SC that indicates the coherent synthesis of a sub-cycle pulse with a duration of about 0.

View Article and Find Full Text PDF

α-tricalcium (α-TCP) phosphate is widely used as an osteoinductive biocompatible material, serving as an alternative to synthetic porous bone materials. The objective of this study is to obtain a highly filled fibrous nonwoven material composed of poly-3-hydroxybutyrate (PHB) and α-TCP and to investigate the morphology, structure, and properties of the composite obtained by the electrospinning method (ES). The addition of α-TCP had a significant effect on the supramolecular structure of the material, allowing it to control the crystallinity of the material, which was accompanied by changes in mechanical properties, FTIR spectra, and XRD curves.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetes increases the risk of ischemic stroke by worsening cerebral damage due to hyperglycemia, though the exact mechanisms are not fully understood.
  • This study presents novel findings on the real-time dynamics of hydrogen peroxide (HO) in neuronal mitochondria during ischemic stroke, using advanced technology on both cultured cells and rat brains.
  • Results indicate that high blood sugar doesn't impact HO generation in the ischemic area but does worsen the overall effects of the stroke, revealing how elevated glucose levels can alter mitochondrial function in neurons.
View Article and Find Full Text PDF

The ecological plasticity of aphid populations is determined by their clonal and morphotypic diversity. Clones will be successful when the development of their component morphotypes is optimized. The purpose of this work was to reveal the peculiarities of clonal composition and the developmental characteristics of different summer morphotypes for the rose-grass aphid, (Walk.

View Article and Find Full Text PDF

This paper focuses on the study of the structure and mechanical properties of CoCrCuFeNi high-entropy alloys and their adhesion to single diamond crystals. CoCrCuFeNi alloys were manufactured by the powder metallurgy route, specifically via mechanical alloying of elemental powders, followed by hot pressing. The addition of copper led to the formation of a dual-phase FCC + FCC2 structure.

View Article and Find Full Text PDF

This paper focuses on the microstructure, phase composition, mechanical, tribological and corrosion properties of high-entropy alloys (HEAs) in the CoCrCuFeNi system depending on copper content, which was varied from 0 to 20 at. % with an increment of 5%. CoCrCuFeNi alloys were manufactured by powder metallurgy methods: mechanical alloying and hot pressing of element mixtures.

View Article and Find Full Text PDF

The present paper considers a mathematical model describing the time evolution of spin states and magnetic properties of a nanomaterial. We present the results of two variants of nanosystem simulations. In the first variant, cobalt with a structure close to the hexagonal close-packed crystal lattice was considered.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a common complex condition associated with high morbidity and mortality. Polygenic prediction could enhance CKD screening and prevention; however, this approach has not been optimized for ancestrally diverse populations. By combining APOL1 risk genotypes with genome-wide association studies (GWAS) of kidney function, we designed, optimized and validated a genome-wide polygenic score (GPS) for CKD.

View Article and Find Full Text PDF

We demonstrate a versatile framework for cellular brain imaging in awake mice based on suitably tailored segments of graded-index (GRIN) fiber. Closed-form solutions to ray-path equations for graded-index waveguides are shown to offer important insights into image-transmission properties of GRIN fibers, suggesting useful recipes for optimized GRIN-fiber-based deep-brain imaging. We show that the lengths of GRIN imaging components intended for deep-brain studies in freely moving rodents need to be chosen as a tradeoff among the spatial resolution, the targeted imaging depth and the degree of fiber-probe invasiveness.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a method for real-time monitoring of hydrogen peroxide and pH changes in rat stroke models using fiber-optic technology, allowing researchers to better understand the effects of ischemia on the brain.
  • - By utilizing advanced fluorescent protein sensors and reconnectable fiber probes, the framework enables detailed, multi-site analysis of oxidative stress and acidosis during stroke events, which are critical markers of the condition.
  • - The approach improves the accuracy of measurements by providing enhanced background noise reduction, making the results of in vivo stroke studies more reliable and statistically significant across different animal models.
View Article and Find Full Text PDF

The manuscript presents an algorithm for the optimal estimation of the amplitude and propagation delay time of an ultra-wideband radio signal, in systems for the passive location of fixed targets based on the hybrid RSS/TDoA method in two-dimensional space with two base stations. The optimal estimate is based on the Bayesian strategy of maximum a posteriori probability density, taking into account a priori data on the statistical properties of the Line of Sight radio channel during Gaussian monocycle propagation. The Bayesian Cramer-Rao lower bound (BCRLB) of the delay time and the amplitude estimates for a time-discrete signal are calculated, and the resulting parameter estimate is compared with BCRLB.

View Article and Find Full Text PDF

The first measurement of lepton-jet momentum imbalance and azimuthal correlation in lepton-proton scattering at high momentum transfer is presented. These data, taken with the H1 detector at HERA, are corrected for detector effects using an unbinned machine learning algorithm (multifold), which considers eight observables simultaneously in this first application. The unfolded cross sections are compared with calculations performed within the context of collinear or transverse-momentum-dependent factorization in quantum chromodynamics as well as Monte Carlo event generators.

View Article and Find Full Text PDF

Here we report new data describing the biodiversity of phytobenthic communities based on DNA-metabarcoding using the 18S rDNA marker and the Illumina MiSeq system. The study was initiated due to the blooming of f ilamentous algae (mainly of the genus Spirogyra) and cyanobacteria in the coastal zone of Lake Baikal under climate change and anthropogenic impact. The composition and taxonomic diversity of algae and other organisms associated with them on different sites of Lake Baikal (near Bolshoi Ushkaniy Island, in Listvennichny Bay) and in the Kaya (within the city of Irkutsk, located in the same drainage basin as Lake Baikal) were determined using DNAmetabarcoding.

View Article and Find Full Text PDF

The development of hyperspectral remote sensing equipment, in recent years, has provided plant protection professionals with a new mechanism for assessing the phytosanitary state of crops. Semantically rich data coming from hyperspectral sensors are a prerequisite for the timely and rational implementation of plant protection measures. This review presents modern advances in early plant disease detection based on hyperspectral remote sensing.

View Article and Find Full Text PDF

Octacalcium phosphate (OCP, CaH(PO)·5HO) is known to be a possible precursor of biological hydroxyapatite formation of organic bone tissue. OCP has higher biocompatibility and osseointegration rate compared to other calcium phosphates. In this work, the synthesis of low-temperature calcium phosphate compounds and substituted forms of those at physiological temperatures is shown.

View Article and Find Full Text PDF

Recent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs.

View Article and Find Full Text PDF
Article Synopsis
  • * The study uses advanced genetically encoded biosensors to observe intracellular pH and reactive oxygen species (ROS) dynamics during these processes in both cultured neurons and experimental stroke in rats.
  • * Findings reveal a significant acidosis in the brain tissue almost immediately during the ischemic core, but notable ROS generation was only observed 24 hours later, indicating a disconnect between cell culture and actual metabolic processes in vivo.
View Article and Find Full Text PDF

Substituted calcium phosphates (CaPs) are vital materials for the treatment of bone diseases and repairing and replacement of defects in human hard tissues. In this paper, we present some applications of the rarely used pulsed electron paramagnetic resonance (EPR) and hyperfine interaction spectroscopy approaches [namely, electron spin-echo envelope modulation (ESEEM) and electron-electron double-resonance detected nuclear magnetic resonance (EDNMR)] to investigate synthetic CaPs (hydroxyapatite, tricalcium, and octacalcium phosphate) doped with various cations (Li, Na, Mn, Cu, Fe, and Ba). These resonance techniques provide reliable tools to obtain unique information about the presence and localization of impurity centers and values of hyperfine and quadrupole tensors.

View Article and Find Full Text PDF