Background: We investigated whether differentiation of embryonic stem cells (ESCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection.
Methods And Results: In one series, 129/SvJ-derived mouse ESCs (ES-D3 line) were transplanted by direct myocardial injection (1 x 10(6) cells) into murine hearts of both allogeneic (BALB/c, n=20) and syngeneic (129/SvJ, n=12) recipients after left anterior artery ligation. Hearts were procured at 1, 2, 4, and 8 weeks after ESC transplantation and analyzed by immunohistochemistry to assess immune cell infiltration (CD3, CD4, CD8, B220, CD11c, Mac-1, and Gr-1) and ESC differentiation (hematoxylin and eosin).
Objective: The in vivo immunogenicity of Embryonic Stem Cells is controversial. At present, there is only in vitro evidence of MHC I expression by this cell population but vivid speculation about their immune-privileged state. The immunology aspect of ESC transplantation deserves thorough investigation.
View Article and Find Full Text PDFChronic rejection remains the major obstacle for long-term transplant survival. Both indirect alloresponse and tissue-specific autoimmunity have been implicated in its pathogenesis. The interrelationship between these two types of host anti-graft response remains poorly understood.
View Article and Find Full Text PDFBackground: Inconsistency exists in assessing the severity of graft coronary artery disease (GCAD) in studies that use mouse models. The central issue associated with this inconsistency is the lack of a standardized approach for assessing mouse GCAD.
Methods: We propose a new histologic definition of GCAD based on 3 successive stages (endotheliitis, premature lesion, and mature lesion) that mark the progression of this condition.
Background: Immune-mediated injury to the graft has been implicated in the pathogenesis of chronic rejection. However, little is known regarding the nature of the antigen(s) involved in this immune process. We demonstrated that cardiac transplantation in mice induces an autoimmune T-cell response to a heart tissue-specific protein, cardiac myosin (CM).
View Article and Find Full Text PDFIn this study, we measured direct and indirect T-cell alloresponses mediated by CD4(+) and CD8(+) T cells in three mouse transplantation models: skin, cornea, and retina. We show that the contribution of direct and indirect antigen recognition pathways to the alloresponse to fully allogeneic grafts varies depending upon the nature of the tissue/organ transplanted. The implications of this finding for understanding the cellular mechanisms by which rejection is mediated in different transplant models are discussed.
View Article and Find Full Text PDFThe role of immune response to tissue-specific Ags in transplant rejection is poorly defined. We have previously reported that transplantation of cardiac allografts triggers a CD4(+) Th1 cell response to cardiac myosin (CM), a major contractile protein of the heart, and that pretransplant activation of proinflammatory CM-specific T cells accelerates rejection. In this study, we show that administration of CM together with IFA (CM/IFA) can prevent acute rejection of an allogeneic heart transplant.
View Article and Find Full Text PDFBackground: T cell allorecognition occurs through direct contact with donor peptide: MHC complexes on graft cells and through indirect recognition of donor-derived determinants expressed by recipient MHC molecules. As both indirect allorecognition and autoantigen recognition are self-restricted, we hypothesized that chronic activation of indirectly primed T cells might result in determinant spreading to involve autoantigens, analogous to that which occurs during chronic autoimmune diseases.
Methods: We placed C57BL/6 MHC II knockout (B6 II-/-) skin grafts onto BALB/c SCID mice reconstituted with wild-type (WT) CD4+ T cells.
Chronic allograft dysfunction, which is the most common cause of late allograft failure, is in part caused by an ongoing immune response orchestrated by T lymphocytes primed by the indirect pathway of allorecognition. The low frequencies of such T cells have made it difficult to study indirect alloreactivity by using currently available assays. The development of a sensitive, clinically useful method of measuring indirect alloreactivity among human renal transplant recipients was thus attempted.
View Article and Find Full Text PDFThe transplantation of neuronal cells and tissues represents a promising approach for the treatment of incurable neurodegenerative diseases. Indeed, it has been reported recently that retinal transplantation can rescue photoreceptor cells and delay age-related changes in various retinal layers in rodents. However, retinal grafts deteriorate progressively after placement in recipients' eyes.
View Article and Find Full Text PDFThe presentation of MHC peptides by recipient and donor antigen presenting cells is an essential element in allorecognition and allograft rejection. MHC proteins contains two sets of determinants: the dominant determinants that are efficiently processed and presented to T cells, and the cryptic determinants that are not presented sufficiently enough to induce T-cell responses in vivo. In transplanted mice, initial T-cell response to MHC peptides is consistently limited to a single or a few immunodominant determinants on donor MHC molecule.
View Article and Find Full Text PDFWe used signal transducer and activator of transcription 4 (STAT4) and STAT6 gene knockout (-/-) mice as recipients of fully mismatched cardiac allografts to study the role of T-cell costimulatory pathways in regulating allogeneic T-helper 1 (Th1) versus Th2 responses in vivo. STAT4(-/-) mice have impaired Th1 responses, whereas STAT6(-/-) mice do not generate normal Th2 responses. Cardiac allografts from C57BL/6 mice were transplanted into normal wild-type (WT), STAT4(-/-), and STAT6(-/-) BALB/c recipients.
View Article and Find Full Text PDFWe analyzed CD4+ T helper responses to wild-type (wt) and mutated (mut) p53 protein in normal and tumor-bearing mice. In normal mice, we observed that although some self-p53 determinants induced negative selection of p53-reactive CD4+ T cells, other p53 determinants (cryptic) were immunogenic. Next, BALB/c mice were inoculated with J774 syngeneic tumor cell line expressing mut p53.
View Article and Find Full Text PDFAllograft rejection is initiated by an immune response to donor MHC proteins. We recently reported that this response can result in breakdown of immune tolerance to a recipient self Ag. However, the contribution of this autoimmune response to graft rejection has yet to be determined.
View Article and Find Full Text PDFThe presentation of donor-derived MHC peptides by recipient APCs to T cells is an essential component of the rejection of allografts (indirect allorecognition). Initial alloreactive T cell response is confined to a few well processed and presented dominant determinants on donor MHC. However, during long-term graft rejection, T cell response spreads to formerly poorly presented cryptic allogeneic MHC peptides.
View Article and Find Full Text PDFBreakdown of T cell tolerance to self-myelin basic protein induces an autoimmune process that leads to demyelination of the central nervous system (CNS) in multiple sclerosis (MS) patients. While the autoimmune disease is initiated by antigen-specific autoreactive T cells, there is accumulating evidence that CNS injury is essentially mediated by CNS-infiltrating inflammatory cells. In addition, it is established that activated macrophages and polymorphonuclear cells contribute to tissue damage in several inflammatory diseases by releasing highly reactive oxygen metabolites.
View Article and Find Full Text PDFIndirect allorecognition is an important component of allotransplant rejection. Although the initial indirect alloresponse is limited to a few dominant determinants on donor major histocompatibility complex (MHC) molecules, subsequent spreading to additional determinants on recipient and donor antigens is common. Gilles Benichou and colleagues discuss the mechanisms by which immunodominance is acquired or disrupted in indirect alloresponses, and examine the implications for the design of peptide-based selective immunotherapy in transplantation.
View Article and Find Full Text PDFAlthough the current dogma of T cell recognition stresses its exquisite specificity, T cell clones selected for a given peptide can recognize other sequentially or structurally related peptides. Here, we have examined the immunogenicity and tolerogenicity of various self-peptides derived from region 61-80 of different MHC class I proteins co-expressed in the same mouse. Following immunization of B10.
View Article and Find Full Text PDFT cell tolerance to self-antigens is established through the recognition by immature T cells of dominant self-peptides presented in association with self-MHC molecules in the developing thymus (negative selection). The self-peptide Dd 61-80 is dominant in syngeneic BALB/c mice (H2d). T cell tolerance to Dd 61-80 in this mouse strain resulted in the absence of T cell proliferation following in vivo priming with Dd 61-80 peptide.
View Article and Find Full Text PDFAutologous proteins are continuously processed and presented in the form of peptides associated with self major histocompatibility (MHC) molecules at the surface of antigen-presenting cells for interaction with autoreactive T cells. During thymic selection, the presentation of self peptides is an essential element in the establishment of the T cell repertoire. Developing T cells which recognize self peptide/self MHC complexes with sufficient affinity are clonally deleted.
View Article and Find Full Text PDFThere is accumulating evidence indicating that the T cell response to donor major histocompatibility complex (MHC) peptides plays a crucial role in graft rejection. We and others previously demonstrated the involvement of MHC class-II-restricted recognition of donor MHC class I and II peptides by alloreactive CD4+ T helper cells in graft rejection. Here we studied the in vivo induction of CD8+ cytotoxic T lymphocytes (CTL) directed to donor MHC class I peptides following allotransplantation in the mouse.
View Article and Find Full Text PDF