Publications by authors named "Fedorov O"

The S100 protein family functions as protein-protein interaction adaptors regulated by Ca binding. Formation of various S100 complexes plays a central role in cell functions, from calcium homeostasis to cell signaling, and is implicated in cell growth, migration, and tumorigenesis. We established a suite of biochemical and cellular assays for small molecule screening based on known S100 protein-protein interactions.

View Article and Find Full Text PDF

Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead.

View Article and Find Full Text PDF
Article Synopsis
  • The SPIN1 protein, which reads methyl-lysine marks, is critical in various human diseases but has proven difficult to target due to a lack of effective inhibitors.
  • Research led to the discovery of two new compounds: one that selectively inhibits SPIN1 and another that targets both SPIN1 and G9a/GLP, with the latter displaying high selectivity over other epigenetic targets.
  • The study confirmed the binding of the dual inhibitor to a specific domain of SPIN1 and showed its effectiveness in disrupting SPIN1 interactions in cells, along with being bioavailable in mice, providing valuable tools for studying SPIN1's biological functions.
View Article and Find Full Text PDF

Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.

View Article and Find Full Text PDF

Epigenetic proteins containing YEATS domains (YD) are an emerging target class in drug discovery. Described herein are the discovery and characterization efforts associated with PFI-6, a new chemical probe for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). For hit identification, fragment-like mimetics of endogenous YD ligands (crotonylated histone-containing proteins), were synthesized via parallel medicinal chemistry (PMC) and screened for MLLT1 binding.

View Article and Find Full Text PDF
Article Synopsis
  • - The COVID Moonshot was a collaborative, open-science effort focused on finding a new drug to inhibit the SARS-CoV-2 main protease, which is crucial for the virus's survival.
  • - Researchers developed a novel noncovalent, nonpeptidic inhibitor that stands out from existing drugs targeting the same protease, employing advanced techniques like machine learning and high-throughput structural biology.
  • - Over 18,000 compound designs, 490 ligand-bound x-ray structures, and extensive assay data were generated and shared openly, creating a comprehensive and accessible knowledge base for future drug discovery efforts against coronaviruses.
View Article and Find Full Text PDF

The worldwide public health and socioeconomic consequences caused by the COVID-19 pandemic highlight the importance of increasing preparedness for viral disease outbreaks by providing rapid disease prevention and treatment strategies. The NSP3 macrodomain of coronaviruses including SARS-CoV-2 is among the viral protein repertoire that was identified as a potential target for the development of antiviral agents, due to its critical role in viral replication and consequent pathogenicity in the host. By combining virtual and biophysical screening efforts, we discovered several experimental small molecules and FDA-approved drugs as inhibitors of the NSP3 macrodomain.

View Article and Find Full Text PDF

A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as and demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain.

View Article and Find Full Text PDF

SLK (STE20-like kinase) and STK10 (serine/threonine kinase 10) are closely related kinases whose enzymatic activity is linked to the regulation of ezrin, radixin, and moesin function and to the regulation of lymphocyte migration and the cell cycle. We identified a series of 3-anilino-4-arylmaleimides as dual inhibitors of SLK and STK10 with good kinome-wide selectivity. Optimization of this series led to multiple SLK/STK10 inhibitors with nanomolar potency.

View Article and Find Full Text PDF

Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) regulates the proliferation and differentiation of neuronal progenitor cells during brain development. Consequently, DYRK1A has attracted interest as a target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Down's syndrome. Recently, the inhibition of DYRK1A has been investigated as a potential treatment for diabetes, while DYRK1A's role as a mediator in the cell cycle has garnered interest in oncologic indications.

View Article and Find Full Text PDF

CREBBP (CBP/KAT3A) and its paralogue EP300 (KAT3B) are lysine acetyltransferases (KATs) that are essential for human development. They each comprise 10 domains through which they interact with >400 proteins, making them important transcriptional co-activators and key nodes in the human protein-protein interactome. The bromodomains of CREBBP and EP300 enable the binding of acetylated lysine residues from histones and a number of other important proteins, including p53, p73, E2F, and GATA1.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2's macrodomain in nonstructural protein 3 has the ability to counteract host antiviral signaling, making it a crucial target for antiviral drug development.
  • Extensive screening of over 2500 different chemical fragments identified 214 unique compounds that bind to the macrodomain, with 60 more selected from computational docking of over 20 million fragments.
  • The study validated several promising compounds using advanced techniques, revealing a diverse set of structures that could serve as the basis for developing effective inhibitors against the SARS-CoV-2 macrodomain.
View Article and Find Full Text PDF

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain.

View Article and Find Full Text PDF

Selectivity remains a challenge for ATP-mimetic kinase inhibitors, an issue that may be overcome by targeting unique residues or binding pockets. However, to date only few strategies have been developed. Here we identify that bulky residues located N-terminal to the DFG motif (DFG-1) represent an opportunity for designing highly selective inhibitors with unexpected binding modes.

View Article and Find Full Text PDF

Halophilic archaea from the genus Halorubrum possess two extraordinarily diverged archaellin genes, flaB1 and flaB2. To clarify roles for each archaellin, we compared two natural Halorubrum lacusprofundi strains: One of them contains both archaellin genes, and the other has the flaB2 gene only. Both strains synthesize functional archaella; however, the strain, where both archaellins are present, is more motile.

View Article and Find Full Text PDF

YEATS-domain-containing MLLT1 is an acetyl/acyl-lysine reader domain, which is structurally distinct from well-studied bromodomains and has been strongly associated in development of cancer. Here, we characterized piperazine-urea derivatives as an acetyl/acyl-lysine mimetic moiety for MLLT1. Crystal structures revealed distinct interaction mechanisms of this chemotype compared to the recently described benzimidazole-amide based inhibitors, exploiting different binding pockets within the protein.

View Article and Find Full Text PDF

Modifications of histone tails, including lysine/arginine methylation, provide the basis of a "chromatin or histone code". Proteins that contain "reader" domains can bind to these modifications and form specific effector complexes, which ultimately mediate chromatin function. The spindlin1 (SPIN1) protein contains three Tudor methyllysine/arginine reader domains and was identified as a putative oncogene and transcriptional coactivator.

View Article and Find Full Text PDF

The atom transfer radical addition reaction catalyzed by triphenylphosphine and copper(I) halide is described. The reaction proceeds under irradiation with 365 nm light using a light-emitting diode and was performed in regular glassware. The proposed mechanism involves the formation of quaternary phosphonium salt, which undergoes single electron reduction by copper(I) salt via photo-induced electron transfer.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered BI-9321, a powerful and selective antagonist targeting the NSD3-PWWP1 domain, which is linked to various cancers including breast and lung cancer.
  • The PWWP1 domain is crucial for the survival of acute myeloid leukemia cells, and BI-9321 selectively engages with this domain, showing strong activity at low concentrations.
  • BI-9321 effectively reduces Myc gene expression and cell proliferation in specific leukemia cells, providing a valuable tool for studying the role of PWWP domains in cancer biology.
View Article and Find Full Text PDF

By screening an epigenetic compound library, we identified that UNC0638, a highly potent inhibitor of the histone methyltransferases G9a and GLP, was a weak inhibitor of SPIN1 (spindlin 1), a methyllysine reader protein. Our optimization of this weak hit resulted in the discovery of a potent, selective, and cell-active SPIN1 inhibitor, compound (MS31). Compound potently inhibited binding of trimethyllysine-containing peptides to SPIN1, displayed high binding affinity, was highly selective for SPIN1 over other epigenetic readers and writers, directly engaged SPIN1 in cells, and was not toxic to nontumorigenic cells.

View Article and Find Full Text PDF

Residues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted.

View Article and Find Full Text PDF

Covalent probes can display unmatched potency, selectivity, and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered nonselective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments.

View Article and Find Full Text PDF

Bromodomains (BRDs) are conserved protein interaction modules which recognize (read) acetyl-lysine modifications, however their role(s) in regulating cellular states and their potential as targets for the development of targeted treatment strategies is poorly understood. Here we present a set of 25 chemical probes, selective small molecule inhibitors, covering 29 human bromodomain targets. We comprehensively evaluate the selectivity of this probe-set using BROMOscan and demonstrate the utility of the set identifying roles of BRDs in cellular processes and potential translational applications.

View Article and Find Full Text PDF

We describe SGC-GAK-1 (11), a potent, selective, and cell-active inhibitor of cyclin G-associated kinase (GAK), together with a structurally related negative control SGC-GAK-1N (14). 11 was highly selective in an in vitro kinome-wide screen, but cellular engagement assays defined RIPK2 as a collateral target. We identified 18 as a potent RIPK2 inhibitor lacking GAK activity.

View Article and Find Full Text PDF

β-Catenin-dependent WNT signal transduction governs development, tissue homeostasis, and a vast array of human diseases. Signal propagation through a WNT-Frizzled/LRP receptor complex requires proteins necessary for clathrin-mediated endocytosis (CME). Paradoxically, CME also negatively regulates WNT signaling through internalization and degradation of the receptor complex.

View Article and Find Full Text PDF