Publications by authors named "Fedorov G"

Graphite nanoplatelets (GNPs)-the segregated ultra-high molecular weight polyethylene (UHMWPE)-based composites with hybrid filler-decorated with FeO were developed. Using X-ray diffraction and scanning electron microscopy, it was shown that the decorated component has the shape of separate granules, or their clusters were distributed evenly over the GNPs surface. The individual FeO nanoparticles are predominantly rounded, with diameters of approximately 20-60 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have studied the absorption properties of thin films, specifically noting that a 20 nm thick pyrolyzed carbon (PyC) film can significantly enhance absorption rates when placed on a silicon nitride (SiN) membrane.
  • The PyC film increases the absorption of the SiN membrane to 40% in the terahertz range, while the membrane alone is transparent.
  • This discovery of broadband absorption in the PyC film could lead to advancements in the development of bolometric radiation detectors.
View Article and Find Full Text PDF

One-dimensional carbon nanotubes (CNTs) are promising for future nanoelectronics and optoelectronics, and an understanding of electrical contacts is essential for developing these technologies. Although significant efforts have been made in this direction, the quantitative behavior of electrical contacts remains poorly understood. Here, we investigate the effect of metal deformations on the gate voltage dependence of the conductance of metallic armchair and zigzag CNT field effect transistors (FETs).

View Article and Find Full Text PDF

Widely used in neuroscience the averaging of event related potentials is based on the assumption that small responses to the investigated events are present in every trial but can be hidden under the random noise. This situation often takes place, especially in experiments performed at hierarchically lower levels of sensory systems. However, in the studies of higher order complex neuronal networks evoked responses might appear only under particular conditions and be absent otherwise.

View Article and Find Full Text PDF

We report on helicity sensitive photovoltaic terahertz radiation response of a carbon nanotube made in a configuration of a field-effect transistor. We find that the magnitude of the rectified voltage is different for clockwise and anticlockwise circularly polarized radiation. We demonstrate that this effect is a fingerprint of the plasma waves interference in the transistor channel.

View Article and Find Full Text PDF

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences.

View Article and Find Full Text PDF

We demonstrate nonequilibrium steady-state photon transport through a chain of five coupled artificial atoms simulating the driven-dissipative Bose-Hubbard model. Using transmission spectroscopy, we show that the system retains many-particle coherence despite being coupled strongly to two open spaces. We find that cross-Kerr interaction between system states allows high-contrast spectroscopic visualization of the emergent energy bands.

View Article and Find Full Text PDF

The rectification of electromagnetic waves to direct currents is a crucial process for energy harvesting, beyond-5G wireless communications, ultra-fast science, and observational astronomy. As the radiation frequency is raised to the sub-terahertz (THz) domain, ac-to-dc conversion by conventional electronics becomes challenging and requires alternative rectification protocols. Here, we address this challenge by tunnel field-effect transistors made of bilayer graphene (BLG).

View Article and Find Full Text PDF

Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes.

View Article and Find Full Text PDF

This paper presents a comparative analysis of the gross regional products (GRPs) of 85 Russian regions. Statistical methods were used to analyze datasets on regional GRP, its sectoral composition and growth rates. Many datasets have been computed for the first time, including those of gross value added per capita and per employee.

View Article and Find Full Text PDF

Plasmonic interferometry is a rapidly growing area of research with a huge potential for applications in the terahertz frequency range. In this Letter, we explore a plasmonic interferometer based on graphene field effect transistor connected to specially designed antennas. As a key result, we observe helicity- and phase-sensitive conversion of circularly polarized radiation into dc photovoltage caused by the plasmon-interference mechanism: two plasma waves, excited at the source and drain part of the transistor, interfere inside the channel.

View Article and Find Full Text PDF

Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons.

View Article and Find Full Text PDF

We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation.

View Article and Find Full Text PDF

The study of the interaction of nerve cells with specially designed substrates (scaffolds) with different surface characteristics at the nanoscale is a necessary step in the development of methods of stimulation of regeneration of nervous tissues, as well as to create next generation of bioelectronic devices. A promising material for such scaffolds may be carbon nanotubes (CNT) that are flexible films of graphene rolled into nano-sized cylindrical tubes. CNT were produced by chemical deposition from the gas phase.

View Article and Find Full Text PDF

Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored.

View Article and Find Full Text PDF

A rotating disk composed of alternating light and dark segments may give rise to the wagon wheel illusion: a perceptual reversal in rotation direction. Continuously illuminated (eg in daylight) as well as discretely presented (eg stroboscopic or computer-animated) versions of the illusion exist; here, we investigated the discrete version. Prominence of the illusion is commonly believed to depend on temporal frequency of rotation, but frequency effects have been unsystematic across previous experiments.

View Article and Find Full Text PDF

In this research we investigate neuroblastoma cells cultivated on single-walled carbon nanotubes networks made by CVD method on silicon substrates. The complex analysis of grown cells made by atomic force, electron microscopy and Raman spectroscopy was carried out and the effect of nanotube growth process on proliferation factor was investigated. It is shown that despite of a weak decrease in proliferation, cell morphology remains unchanged and no physical or chemical interaction between carbon nanotubes and cells is observed.

View Article and Find Full Text PDF

Background: Previously we have shown that, during sleep, electrical and magnetic stimulation of areas of the stomach and small intestine evoked neuronal and EEG responses in various cortical areas. In this study we wanted to correlate natural myoelectrical activity of the duodenum with cortical neuronal activity, and to investigate whether there is a causal link between them during periods of slow-wave sleep.

Methods: We have recorded the myoelectrical activity from the wall of the duodenum and activity of single neurons from three cortical visual areas in naturally sleeping cats and investigated causal interrelationship between these structures during slow-wave sleep.

View Article and Find Full Text PDF

Rats were cooled in water until attaining profound hypothermia and respiratory arrest. After removal from water, 0.5% solution of Na2EDTA was administered intravenously.

View Article and Find Full Text PDF