Background: The aims of this study were to evaluate the effect of poloxamer 407 administration on atherogenic serum lipoprotein fractions and subfractions associated with cholesterol, triglycerides and phospholipids, as well as the onset of early atherosclerosis, in mice.
Methods: Mice were administered either sterile saline or poloxamer 407 (to induce a dose-controlled hyperlipidemia) for 1 month and then sacrificed at 1, 4 and 10 days after the last dose of poloxamer 407. Systolic and diastolic blood pressure, the activity of a cysteine protease (cathepsin B) in cardiac and liver tissue, and histological/morphological examination of heart and liver specimens was performed for each group of mice at each time point.
The effects of repeated administration of poloxamer 407 (P-407) on lipoprotein-cholesterol (LP-C) and lipoprotein-triglyceride (LP-TG) fractions and subfractions, as well as the effect on liver and heart proteases, were studied. Repeated administration of P-407 to male CBA mice resulted in a model of atherosclerosis with increased diastolic blood pressure; there was a drastic increase in total serum cholesterol and especially TG. A novel small-angle X-ray scattering method for the determination of the fractional and subfractional composition of LP-C and LP-TG was used.
View Article and Find Full Text PDFThe effects of atorvastatin and carboxymethylated β-glucan (CMG) on the lipoprotein-cholesterol (LP-C) and lipoprotein-triglyceride (LP-TG) fractions and subfractions at the early stage of murine hyperlipidemia, and its pleiotropic anti-inflammatory effects, were studied. Atorvastatin and CMG were administered in ICR male mice with acute lipemia induced with a single injection of poloxamer 407 (P-407). A novel small-angle X-ray scattering method for the determination of fractional and subfractional composition of LP-C and LP-TG was used.
View Article and Find Full Text PDFObjectives: The effects of atorvastatin on the atherogenic and anti-atherogenic lipoprotein-cholesterol (C-LP) and lipoprotein-triglyceride (TG-LP) fractions and subfractions at the early stage of murine acute hyperlipidaemia, and its pleiotropic anti-inflammatory effects via the activity of matrix metalloproteinases (MMPs) were studied.
Methods: Atorvastatin (75 mg/kg) was administered to ICR mice with acute lipaemia induced by a single injection of Triton WR 1339 (500 mg/kg). A novel small-angle X-ray scattering (SAXS) method was used for the determination of the fractional and subfractional composition of C-LP and TG-LP.
Using small-angle X-ray scattering (SAXS), light scattering (LS), and soft laser ablation we have shown that lactoferrin (LF) in solution at neutral pH is oligomerized in the absence of salt or at physiological salt concentrations. The level of oligomerization depends on the concentration of LF, KCl or NaCl, and on the duration of the protein storage in solution. At the concentrations comparable with those in human milk (1-6 mg/ml), the average radius of gyration (R(g)) values of LF can attain 400-480 A, while fresh solution of previously lyophylized LF demonstrate a lower average R(g) (50-100 A), and R(g) value characterizing the LF monomer formed at 1 M NaCl is 26.
View Article and Find Full Text PDFHIV-1 integrase (IN) catalyses integration of a DNA copy of the viral genome into the host genome. Specific interactions between retroviral IN and long terminal repeats (LTR) are required for this insertion. To characterize quantitatively the influence of the determinants of DNA substrate specificity on the oligomerization status of IN, we used the small-angle X-ray scattering (SAXS) technique.
View Article and Find Full Text PDFBackground: Many dangerous diseases are associated with changes in the concentration of blood lipoproteins (LPs). Thus a fast and accurate method is needed to determine the composition of lipoprotein fractions in human serum.
Material/methods: A comparison of 30 parameters characterizing different LPs in serum from 120 healthy donors and 102 multiple sclerosis patients was carried out using a unique algorithm developed to determine the concentrations of all the main lipids and apolipoproteins in each LP fraction and subfraction.