Publications by authors named "Fedor Mitschke"

We demonstrate a peculiar mechanism for the formation of bound states of light pulses of substantially different optical frequencies, in which pulses are strongly bound across a vast frequency gap. This is enabled by a propagation constant with two separate regions of anomalous dispersion. The resulting soliton compound exhibits moleculelike binding energy, vibration, and radiation and can be understood as a mutual trapping providing a striking analogy to quantum mechanics.

View Article and Find Full Text PDF

Optical telecommunication employs light pulses travelling down optical fibres; in a binary format logical Ones and Zeroes are represented by the presence or absence of a light pulse in a given time slot, respectively. The fibre's data-carrying capacity must keep up with increasing demand, but for binary coding it now approaches its limit. Alternative coding schemes beyond binary are currently hotly debated; the challenge is to mitigate detrimental effects from the fibre's nonlinearity.

View Article and Find Full Text PDF

The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems.

View Article and Find Full Text PDF

Harbour seals are active at night and during the day and see well in both air and water. Polarised light, which is a well-known visual cue for orientation, navigation and foraging, is richly available in harbour seal habitats, both above and below the water surface. We hypothesised that an ability to detect and use polarised light could be valuable for seals, and thus tested if they are able to see this property of light.

View Article and Find Full Text PDF

The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds.

View Article and Find Full Text PDF

In this Letter we give theoretical explanations for the recent observations of the excitation of Raman-shifting pulse pairs in solid-core photonic crystal fibers. The formation of these pairs is surprisingly common in the deep anomalous dispersion regime of a large variety of highly nonlinear optical fibers, away from zero group-velocity dispersion points. We have developed two different theoretical models, which agree very well in their conclusions.

View Article and Find Full Text PDF

In many biological systems, information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. In contrast to the dogma of endocrine homeostasis, it could be shown that the biological information in hormonal networks is not only present as a constant hormone concentration in the circulation pool. Recently, it has become apparent that hormone pulses contribute to this hormonal pool, which modulates the responsiveness of receptors within the cell membrane by regulation of the receptor synthesis, movement within the membrane layer, coupling to signal transduction proteins and internalization.

View Article and Find Full Text PDF