In this study, comparative analysis of calculated (GIAO method, DFT level) and experimental P NMR shifts for a wide range of model palladium complexes showed that, on the whole, the theory reproduces the experimental data well. The exceptions are the complexes with the P=O phosphorus, for which there is a systematic underestimation of shielding, the value of which depends on the flexibility of the basis sets, especially at the geometry optimization stage. The use of triple-ζ quality basis sets and additional polarization functions at this stage reduces the underestimation of shielding for such phosphorus atoms.
View Article and Find Full Text PDFIn lumazines, deazalumazines and pyrimidines, there are extremely low-energy "rare" tautomers (<2.3 kcal/mol), this fact perfectly explains the observed mobility of usually "non-labile" protons of methyl groups in such systems. In general, the dependence of tautomeric preference on structure correlates well with experimental findings.
View Article and Find Full Text PDFThe interplay of NMR experiments and DFT calculations of NMR parameters is a reliable method for determining the relative configurations of pentacoordinate chiral spirophosphoranes bearing two six- or five-membered rings at the phosphorus atom in solution. The major product of the Betti based derivatives corresponds to the isomers with both substituents at chiral carbons being opposite to the P-H proton. The next populated product corresponds to the isomer with different chiralities at carbons.
View Article and Find Full Text PDFIn solution, nickel phosphanido hydride complexes ([NiH{P(Ar)(H)}(dtbpe)], Ar = Dmp, Mes*) undergo a degenerate intramolecular exchange, with the Ni-H and P-H hydrogens and both halves of the dtbpe moiety interchanging. This intramolecular rearrangement was shown to occur in three steps: first, the hydride proton migrates to phosphorus, then the P-Aryl moiety rotates around the P-Ni bond, and finally the back migration of one proton to Ni completes the process. Both migration and rotation were determined to be characterized by high barriers (on the NMR time scale) and to depend on the type of aryl group at the terminal phosphorus.
View Article and Find Full Text PDFA novel type of 14-membered cyclic polyphosphine, namely 1,8-diaza-3,6,10,13-tetraphosphacyclotetradecanes 2a–4ahas been synthesized by the condensation of 1,2-bis(phenylphosphino)ethane, formaldehyde and alkylamines (isopropylamine, ethylamine and cyclohexylamine) as a RRRR/SSSS-stereoisomer. The structure of macrocycle 2a was investigated by NMR-spectroscopy and X-ray crystal structure analysis. The unique reversible processes of macrocycles 2a–4a splitting onto the corresponding rac- (2b–4b) and meso- (2c–4c) stereoisomers of 1-aza-3,6-diphosphacycloheptanes were discovered.
View Article and Find Full Text PDFThe aim of this work is to convince practitioners of (31)P NMR methods to regard simple GIAO quantum chemical calculations as a safe tool in structural analysis of organophosphorus compounds. A comparative analysis of calculated GIAO versus experimental (31)P NMR chemical shifts (CSs) for a wide range of phosphorus containing model compounds was carried out. A variety of combinations (at the HF, DFT (B3LYP and PBE1PBE), and MP2 levels using 6-31G(d), 6-31+G(d), 6-31G(2d), 6-31G(d,p), 6-31+G(d,p), 6-311G(d), 6-311G(2d,2p), 6-311++G(d,p), 6-311++G(2d,2p), and 6-311++G(3df,3pd) basis sets) were tested.
View Article and Find Full Text PDF