Publications by authors named "Fedor Eroshkin"

Article Synopsis
  • Embryonic scaling is a unique biological phenomenon where embryos adjust their spatial structure according to their size, initially described in sea urchins.
  • Recent research has aimed to understand the role of specific genes, termed "scalers," which are crucial in regulating morphogen concentration gradients in correlation with embryo size.
  • The findings confirm that scalers, including the gene Mmp3, exist in various reaction-diffusion system models and play a vital role in maintaining gradient scaling across different embryonic types.
View Article and Find Full Text PDF
Article Synopsis
  • During gastrulation and neurulation in vertebrate embryos, the chordamesoderm and neuroectoderm converge and extend under a genetic program.
  • This study investigates whether mechanical tension from these movements influences gene expression in these tissues.
  • By analyzing stretched midgastrula embryo explants, researchers found that mechanical stretching activates certain genes in the stretched trunk region while inhibiting others in low-stretch areas, suggesting that mechanical forces could regulate embryonic patterning and development.
View Article and Find Full Text PDF

The orphan insulin receptor-related receptor (IRR) encoded by gene is the third member of the insulin receptor family, also including the insulin receptor (IR) and the insulin-like growth factor receptor (IGF-1R). IRR is the extracellular alkaline medium sensor. In mice, is expressed only in small populations of cells in specific tissues, which contain extracorporeal liquids of extreme pH.

View Article and Find Full Text PDF
Article Synopsis
  • Zyxin is a protein that helps control the structure of the cytoskeleton and gene expression, influencing both cell differentiation and stem cell status.
  • When zyxin levels are decreased in Xenopus laevis embryos, it leads to reduced expression of genes that promote differentiation, while increasing the expression of genes linked to stem cell characteristics.
  • Specifically, zyxin interacts with the Y-box protein Ybx1 to stabilize certain mRNAs, preventing their degradation, which highlights zyxin's role in regulating the balance between cell movement, differentiation, and maintaining stem cell properties.
View Article and Find Full Text PDF

The Agr family genes, Ag1, Agr2, and Agr3, encode for the thioredoxin domain containing secreted proteins and are specific only for vertebrates. These proteins are attracting increasing attention due to their involvement in many physiological and pathological processes, including exocrine secretion, cancer, regeneration of the body appendages, and the early brain development. At the same time, the mode by which Agrs regulate intracellular processes are poorly understood.

View Article and Find Full Text PDF

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria.

View Article and Find Full Text PDF

The homeodomain-containing transcription factor Anf (also known as Rpx/Hesx1 in mammals) plays an important role during the forebrain development in vertebrates. Here we demonstrate the ability of the Xenopus laevis Anf, Xanf1/Hesx1, to directly bind SRY-related HMG-box-containing transcription factor SoxD/Sox15 and to cooperate with the latter during regulating of the expression of Xanf1/Hesx1 own gene. As we have shown by GST pull-down, EMSA and the luciferase reporter assays, Xanf1/Hesx1 and SoxD/Sox15 bind the Xanf1/Hesx1 promoter region counteracting the inhibitory effect of Xanf1/Hesx1 alone.

View Article and Find Full Text PDF

Cell movements during embryogenesis produce mechanical tensions that shape the embryo and can also regulate gene expression, thereby affecting cell differentiation. Increasing evidence indicates that mechanosensitive regulation of gene expression plays important roles during embryogenesis by coupling the processes of morphogenesis and differentiation. However, the molecular mechanisms of this phenomenon remain poorly understood.

View Article and Find Full Text PDF

Accumulated evidence indicates that the core genetic mechanisms regulating early patterning of the brain rudiment in vertebrates are very similar to those operating during development of the anterior region of invertebrate embryos. However, the mechanisms underlying the morphological differences between the elaborate vertebrate brain and its simpler invertebrate counterpart remain poorly understood. Recently, we hypothesized that the emergence of the most anterior unit of the vertebrate brain, the telencephalon, could be related to the appearance in vertebrates' ancestors of a unique homeobox gene, Anf/Hesx1(further Anf), which is absent from all invertebrates and regulates the earliest steps of telencephalon development in vertebrates.

View Article and Find Full Text PDF

Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/β -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins.

View Article and Find Full Text PDF

Using a systematic, whole-genome analysis of enhancer activity of human-specific endogenous retroviral inserts (hsERVs), we identified an element, hsERVPRODH, that acts as a tissue-specific enhancer for the PRODH gene, which is required for proper CNS functioning. PRODH is one of the candidate genes for susceptibility to schizophrenia and other neurological disorders. It codes for a proline dehydrogenase enzyme, which catalyses the first step of proline catabolism and most likely is involved in neuromediator synthesis in the CNS.

View Article and Find Full Text PDF

Zyxin is a cytoskeletal protein that controls cell movements by regulating actin filaments assembly, but it can also modulate gene expression owing to its interactions with the proteins involved in signaling cascades. Therefore, identification of proteins that interact with Zyxin in embryonic cells is a promising way to unravel mechanisms responsible for coupling of two major components of embryogenesis: morphogenetic movements and cell differentiation. Now we show that in Xenopus laevis embryos Zyxin can bind to and suppress activity of the primary effector of Sonic hedgehog (Shh) signaling cascade, the transcription factor Gli1.

View Article and Find Full Text PDF

We describe here the expression pattern of Noggin4 during the early development of the chick embryo (Gallus gallus). The expression of this gene starts with the onset of gastrulation (stage HH4), in two bilateral bands along the primitive streak, with a local maximum around Hensen's node. By the end of gastrulation, Noggin4 transcripts are distributed diffusely throughout the epiblast, with the highest concentration in the head ectoderm.

View Article and Find Full Text PDF

The secreted protein Noggin1 is an embryonic inducer that can sequester TGFβ cytokines of the BMP family with extremely high affinity. Owing to this function, ectopic Noggin1 can induce formation of the headless secondary body axis in Xenopus embryos. Here, we show that Noggin1 and its homolog Noggin2 can also bind, albeit less effectively, to ActivinB, Nodal/Xnrs and XWnt8, inactivation of which, together with BMP, is essential for the head induction.

View Article and Find Full Text PDF

The question of how subdivision of embryo into cell territories acquiring different fates is coordinated with morphogenetic movements shaping the embryonic body still remains poorly resolved. In the present report, we demonstrate that a key regulator of anterior neural plate patterning, the homeodomain transcriptional repressor Xanf1/Hesx1, can bind to the LIM-domain protein Zyxin, which is known to regulate cell morphogenetic movements via influence on actin cytoskeleton dynamics. Using a set of deletion mutants, we found that the Engrailed-type repressor domain of Xanf1 and LIM2-domain of Zyxin are primarily responsible for interaction of these proteins.

View Article and Find Full Text PDF

Noggin is a neural inducer secreted by cells of the Spemann organizer. A single noggin gene was identified until very recently in all tested vertebrates. The only exception was zebrafish, in which two close homologs of noggin, named noggin1 and noggin3, and one gene more diverged from them, noggin2, were cloned.

View Article and Find Full Text PDF

Expression of the homeobox gene Xanf-1 starts within the presumptive forebrain primordium of the Xenopus embryo at the midgastrula stage and is inhibited by the late neurula. Such stage-specific inhibition is essential for the normal development as the experimental prolongation of the Xanf-1 expression elicits severe brain abnormalities. To identify transcriptional regulators that are responsible for the Xanf-1 inhibition, we have used the yeast one-hybrid system and identified a novel Xenopus homeobox gene X-nkx-5.

View Article and Find Full Text PDF

During early development of the nervous system in vertebrates, expression of the homeobox gene Anf/Hesx1/Rpx is restricted to the anterior neural plate subdomain corresponding to the presumptive forebrain. This expression is essential for normal forebrain development and ectopic expression of Xenopus Anf, Xanf1 (also known as Xanf-1), results in severe forebrain abnormalities. By use of transgenic embryos and a novel bi-colour reporter technique, we have identified a cis-regulatory element responsible for transcriptional repression of Xanf1 that defines its posterior expression limit within the neural plate.

View Article and Find Full Text PDF

Investigation of molecular mechanisms underlying early patterning of the nervous system is an important task of modern developmental biology. Previously, we identified a novel homeobox gene, Anf, that is expressed in the most anterior zone at the beginning of neuroectoderm specification. The expression pattern of Anf corresponds to primordia of the telencephalon and the rostral part of the diencephalon.

View Article and Find Full Text PDF