Publications by authors named "Federico Zuckermann"

The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99 % of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity.

View Article and Find Full Text PDF

Influenza A Virus in swine (IAV-S) is a zoonotic pathogen that is nearly ubiquitous in commercial swine in the USA. Swine possess sialic acid receptors that allow co-infection of human and avian viruses with the potential of pandemic reassortment. We aimed to develop a fast and robust testing method for IAV-S detection on swine farms.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/β) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease.

View Article and Find Full Text PDF

Point-of-care diagnostic technologies are becoming more widely available for production species. Here, we describe the application of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect the matrix (M) gene of influenza A virus in swine (IAV-S). M-specific LAMP primers were designed based on M gene sequences from IAV-S isolated in the USA between 2017 and 2020.

View Article and Find Full Text PDF

Viral respiratory infections predispose lungs to bacterial coinfections causing a worse outcome than either infection alone. Porcine reproductive and respiratory syndrome virus (PRRSV) causes pneumonia in pigs and is often associated with bacterial coinfections. We examined the impact of providing weanling pigs a -based direct-fed microbial (DFM) on the syndrome resulting from infection with either Salmonella enterica serotype Choleraesuis alone, or in combination with PRRSV.

View Article and Find Full Text PDF

The main target cells for African swine fever virus (ASFV) replication in pigs are of monocyte macrophage lineage and express markers typical of the intermediate to late stages of differentiation. The lack of a porcine cell line, which accurately represents these target cells, limits research on virus host interactions and the development of live-attenuated vaccine strains. We show here that the continuously growing, growth factor dependent ZMAC-4 porcine macrophage cell line is susceptible to infection with eight different field isolates of ASFV.

View Article and Find Full Text PDF

The NC229 research consortium was created in 1999 in response to the emergence of porcine reproductive and respiratory syndrome virus (PRRSV), a viral agent responsible for devastating economic losses to the swine industry. The project follows the traditional "consortium" approach for Multistate Agricultural Research driven through the US State Agricultural Experiment Stations (SAES), wherein stakeholder-driven needs to combat swine infectious diseases are identified and scientific solutions pursued by combining funds from federal, state, commodity groups, and the animal health industry. The NC229 consortium was the main driving force in successfully competing for a USDA multi-station Coordinated Agricultural Project (PRRS CAP-I) in 2004-2008, immediately followed by a renewal for 2010-2014 (PRRS CAP-II)-, resulting in an overall record achievement of almost $10 million dollars.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) infects alveolar macrophages (AMϕ), causing dysregulated alpha interferon (IFN-α) and tumor necrosis factor alpha (TNF-α) production through a mechanism(s) yet to be resolved. Here, we show that AMϕ infected with PRRSV secreted a reduced quantity of IFN-α following exposure of the cell to synthetic double-stranded RNA (dsRNA). This reduction did not correlate with reduced IFNA1 gene transcription.

View Article and Find Full Text PDF

The organization and delivery of a curriculum is the responsibility of the faculty in educational institutions. Curricular revision is often a hotly debated topic in any college faculty. At the University of Illinois, a 2006 mandate for curriculum modernization from the American Veterinary Medical Association Council on Education provided impetus for a long-discussed curricular revision.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a leading cause of economic burden to the pork industry worldwide. The routinely used modified live PRRS virus vaccine (PRRS-MLV) induces clinical protection, but it has safety concerns. Therefore, in an attempt to develop a safe and protective inactivated PRRSV vaccine, we generated PRRS-virus-like-particles (PRRS-VLPs) containing the viral surface proteins GP5-GP4-GP3-GP2a-M or GP5-M using a novel baculovirus expression system.

View Article and Find Full Text PDF

Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists.

View Article and Find Full Text PDF

Tuberculosis is an important health concern for Asian elephant (Elephas maximus) populations worldwide, however, mechanisms underlying susceptibility to Mycobacterium tuberculosis are unknown. Proliferative responses assessed via brominated uridine incorporation and cytokine expression measured by real-time RT-PCR were evaluated in peripheral blood mononuclear cell (PBMC) cultures from 8 tuberculosis negative and 8 positive Asian elephants. Cultures were stimulated with Mycobacterium bovis purified protein derivative (PPD-B), M.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant swine pathogen which exhibits considerable sequence diversity. In an attempt to identify highly conserved T-cell epitopes contained in proteins of this virus, we examined heptadecamer peptides spanning the sequence of the PRRSV nonstructural proteins (NSPs) 9 and 10, both of which are highly conserved, for their ability to elicit a recall proliferative and interferon-gamma response in peripheral blood mononuclear cells obtained from pigs immunized against the type-II PRRSV strain FL-12. These studies led to the identification of four peptides, two from each NSP9 and NSP10 that appear to contain T-cell epitopes.

View Article and Find Full Text PDF

The abilities of the modified-live Prime Pac (PP) strain of porcine reproductive and respiratory syndrome virus (PRRSV), propagated in either traditional simian cells (MARC-145) or in a novel porcine alveolar macrophage cell line (ZMAC), to confer pigs protection against subsequent PRRSV challenge were compared. Eight week-old pigs were injected with PP virus grown in one of the two cell types and then exposed 4 weeks later to the "atypical" PRRSV isolate NADC-20. Control animals were similarly challenged or remained PRRSV-naïve.

View Article and Find Full Text PDF

Background: Probiotics have been studied as immunomodulatory agents of allergy. Several human probiotic trials tracking the development of eczema and other forms of allergy have yielded inconsistent results. A recent infant study demonstrated that pre and postnatal Lactobacillus rhamnosus HN001 (HN001) supplementation decreased the prevalence of eczema and IgE associated eczema.

View Article and Find Full Text PDF

Although enveloped viruses typically trigger the prodigious secretion of alpha interferon (IFN-α) by plasmacytoid dendritic cells (pDC), porcine pDC remain quiescent when exposed to porcine reproductive and respiratory syndrome virus (PRRSV). This inactivity is likely due to virus-mediated interference since the typical IFN-α response by either purified or nonsorted porcine pDC to transmissible gastroenteritis virus (TGEV) or the Toll-like receptor 9 agonist, oligodeoxynucleotide (ODN) D19, was markedly reduced in the presence of PRRSV. Suppression occurred independently of virus viability and acidification of pDC early endosomes but correlated with diminished levels of IFN-α mRNA.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that pigs vaccinated with a modified-live virus (MLV) vaccine showed protection against PRRSV, while those vaccinated with a killed virus vaccine did not, despite elevated IL-12 levels in the latter group.
  • * Future research using this cytokine assay could help identify protective immune responses at a tissue level, contributing to the design of more effective vaccines for PRRSV and other swine diseases.
View Article and Find Full Text PDF

The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is known to possess the properties of an ion-channel protein, and in the present study we show that the PRRSV E protein is N-terminal myristoylated. The PRRSV E protein contains the consensus motif of (1)MGxxxS(6) for myristoylation, and in the presence of 2-hydroxymyristic acid, the virus titer decreased by 2.5 log TCID(50) and the level of viral RNA was reduced significantly.

View Article and Find Full Text PDF

Plausible representatives of plasmacytoid dendritic cells (pDCs) in pigs have been characterized as being CD4(hi)CD172(lo). Due to their paucity in blood, we utilized novel fluorescent-activated cell sorting procedures to isolate them from PBMC. The resultant subset was greater than 98% homogeneous in regards to the selected phenotype and contained the preponderance of individuals secreting IFN-alpha after exposure to a known stimulant, transmissible gastroenteritis virus (TGEV).

View Article and Find Full Text PDF

Ninety-six pentadecapeptides spanning glycoprotein 5 (GP5) of porcine reproductive and respiratory virus (PRRSV) were screened for their ability to elicit a recall interferon-gamma response from peripheral blood mononuclear cells isolated from 22 pigs infected with up to two genetically divergent PRRSV strains. Two distinct regions (amino acid residues 117-131, LAALICFVIRLAKNC, and 149-163, KGRLYRWRSPVII/VEK) appeared to contain immunodominant T-cell epitopes based on their ability to stimulate above average numbers of interferon-gamma secreting cells as compared to other GP5 peptides. A survey of PRRSV isolates indicated that these two sites are relatively conserved with at most a two amino acid variation and thus should be considered for incorporation into a multi-valent vaccine against PRRS.

View Article and Find Full Text PDF

Objective: To determine whether 6.5-week-old gilts that have not previously been exposed to porcine reproductive and respiratory syndrome (PRRS) virus can be acclimatized to an endemic strain of the virus by commingling with age-matched gilts inoculated with the endemic PRRS virus strain and whether 10.5-week-old gilts can be acclimatized by commingling with age-matched inoculated or contact-exposed animals.

View Article and Find Full Text PDF

The efficacy of two different types of commercial vaccines against PRRSV (Euro-type) was evaluated based on clinical parameters upon challenge as well as post-challenge virological profiles (viremia and viral load in tissues upon necropsy, measured in both cases by quantitative real time PCR). In an attempt to establish correlates of protective immunity, two commonly proposed parameters predictive of immunity were measured: (1) serologic responses (ELISA and neutralizing antibodies), (2) frequency of gamma interferon-producing cells in peripheral blood mononuclear cell fraction. The vaccines compared consisted of two commercially available products that are regularly marketed in Spain: one modified live virus and one killed vaccine.

View Article and Find Full Text PDF

Objective: To compare immunologic responses and reproductive outcomes in sows housed under field conditions following controlled exposure to a wild-type strain of porcine reproductive and respiratory syndrome virus (PRRSV strain WTV) or vaccination with a modified-live virus (MLV) vaccine.

Design: Randomized controlled trial.

Animals: 30 PRRSV-naïve 10-week-old female pigs.

View Article and Find Full Text PDF

The opportunities for utilizing swine biomedical models are immense, particularly in models that address lifestyle issues (nutrition, stress, alcohol, drugs of abuse, etc.). However, in order to fully capitalize upon the promise, there needs to be a more general recognition of these cofactors, such as nutrition, as key modulators of phenotype via genomic, epigenetic, and postgenomic mechanisms.

View Article and Find Full Text PDF

Objective: To determine whether cell-mediated immunity against porcine reproductive and respiratory syndrome (PRRS) virus is correlated with protection against reproductive failure in sows during clinical outbreaks of PRRS in commercial herds.

Design: Outbreak investigation in 4 swine breeding herds.

Animals: 97 sows.

View Article and Find Full Text PDF