Spin-lock (SL) pulses have been proposed to directly detect neuronal activity otherwise inaccessible through standard functional magnetic resonance imaging. However, the practical limits of this technique remain unexplored. Key challenges in SL-based detection include ultra-weak signal variations, sensitivity to magnetic field inhomogeneities, and potential contamination from blood oxygen level-dependent effects, all of which hinder the reliable isolation of neuronal signals.
View Article and Find Full Text PDFPurpose: To introduce a tool (TensorFit) for ultrafast and robust metabolite fitting of MRSI data based on Torch's auto-differentiation and optimization framework.
Methods: TensorFit was implemented in Python based on Torch's auto-differentiation to fit individual metabolites in MRS spectra. The underlying time domain and/or frequency domain fitting model is based on a linear combination of metabolite spectroscopic response.
Recombinant adeno-associated virus (rAAV) vectors have displayed enormous potential as a platform for delivery of gene therapies. Purification of rAAV at industrial scale involves a series of elaborate, material, and time-consuming midstream steps, such as clarification by depth filtration and concentration/buffer exchange by tangential flow filtration. In this study, we developed a filter-less flow capture method for purification of rAAV serotype 5, using a high-gradient magnetic separator and magnetic Mag Sepharose beads coupled to an AVB affinity ligand.
View Article and Find Full Text PDFWith the rise of novel 3D magnetic resonance spectroscopy imaging (MRSI) acquisition protocols in clinical practice, which are capable of capturing a large number of spectra from a subject's brain, there is a need for an automated preprocessing pipeline that filters out bad-quality spectra and identifies contaminated but salvageable spectra prior to the metabolite quantification step. This work introduces such a pipeline based on an ensemble of deep-learning classifiers. The dataset consists of 36,338 spectra from one healthy subject and five brain tumor patients, acquired with an EPSI variant, which implemented a novel type of spectral editing named SLOtboom-Weng (SLOW) editing on a 7T MR scanner.
View Article and Find Full Text PDFThe development of organic room-temperature phosphorescent (ORTP) materials represents an active field of research due to their significant advantages with respect to their organometallic counterparts. Two cyclic triimidazole () derivatives bearing one and three hexyl-thiophene moieties, and , have been prepared and characterized. Both compounds display enhanced quantum yields in their crystalline form with respect to those in a solution state, revealing crystallization-enhanced emissive (CEE) behavior.
View Article and Find Full Text PDFCH34 exhibits extraordinary metabolic versatility, including chemolithoautotrophic growth; degradation of BTEX (benzene, toluene, ethylbenzene, xylene); high resistance to numerous metals; biomineralization of gold, platinum, silver, and uranium; and accumulation of polyhydroxybutyrate (PHB). These qualities make it a valuable host for biotechnological applications such as bioremediation, bioprocessing, and the generation of bioelectricity in microbial fuel cells (MFCs). However, the lack of genetic tools for strain development and studying its fundamental physiology represents a bottleneck to boosting its commercial applications.
View Article and Find Full Text PDFExtracting quantitative information of neuronal signals by non-invasive imaging is an outstanding challenge for understanding brain function and pathology. However, state-of-the-art techniques offer low sensitivity to deep electrical sources. Stimulus induced rotary saturation is a recently proposed magnetic resonance imaging sequence that detects oscillatory magnetic fields using a spin-lock preparation.
View Article and Find Full Text PDFLiving organisms can synthesize a wide range of macromolecules from a small set of natural building blocks, yet there is potential for even greater materials diversity by exploiting biochemical processes to convert unnatural feedstocks into new abiotic polymers. Ultimately, the synthesis of these polymers in situ might aid the coupling of organisms with synthetic matrices, and the generation of biohybrids or engineered living materials. The key step in biohybrid materials preparation is to harness the relevant biological pathways to produce synthetic polymers with predictable molar masses and defined architectures under ambient conditions.
View Article and Find Full Text PDFShort and well defined promoters are essential for advancing cyanobacterial biotechnology. The heterocyst of Nostoc sp. is suggested as a microbial cell factory for oxygen sensitive catalysts, such as hydrogenases for hydrogen production, due to its microoxic environment.
View Article and Find Full Text PDF