Publications by authors named "Federico Ranchetti"

The intracortical canal/vessel systems of long bones are not yet completely understood in terms of their morphology and physiology, mainly because of the difficulty of injecting the small calibre vessels and cutting the calcified matrix. Here, we apply a novel method combining perfusion of the vessels and fracture of the cortical bone to enlighten the architecture of this system. The femurs of ten rabbits were perfused with a water-soluble dye (China ink) or alcoholic glycerol solution, and the fractured cortex specimens were then examined by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

The current model of compact bone is that of a system of longitudinal (Haversian) canals connected by transverse (Volkmann's) canals. Models based on histology or microcomputed tomography lack the morphologic detail and sense of temporal development provided by direct observation. Using direct scanning electron microscopy observation, we studied the bone surface and structure of the intracortical canal system in paired fractured surfaces in rabbit femurs, examining density of canal openings on periosteal and endosteal surfaces, internal network nodes and canal sizes, and collagen lining of the inner canal system.

View Article and Find Full Text PDF

The vascular anatomy of the cortical bone and the canal system are highly correlated, and the former has an important bearing on shape and microscopic lamellar structure, as it is established in the progression of the remodelling process. The classical description of a longitudinal system of canals (Havers') connected by the transversal Volkmann's canals is the generally acknowledged model of the structural organization of the cortex. However, it is remarkably difficult to study the circulation inside the compact bone in detail owing to its hard, calcified matrix, and the methods thus far applied have represented either the bone morphology and the architecture of the canal system or the injected vessel network.

View Article and Find Full Text PDF

The architecture of the diaphyseal bone is closely correlated with the cortical vessel network, whose pattern develops in the course of growth. Various methods have been applied to clarify the three-dimensional anatomy of the cortical canal system, but there is still disagreement about the geometry, blood supply, flux dynamics and factors controlling canal geometry during bone growth and remodeling. A modification of the currently employed dye-injection method was applied to study the vessel network of the whole hemi-shaft of the rabbit femur in mature bones (8-month-old rabbits) and growing bones (1.

View Article and Find Full Text PDF

The radiographic follow-up of a patient with Proteus syndrome is presented. Review of radiographs obtained at 3 years 10 months, 10 years, and 17 years 8 months indicated that the rate of growth in length of the oversized tubular bones of the hands was similar to that of the normal bones of the same hand. This observation supports the view that the primary lesion occurs in the early embryonic period, when the limb bud mesenchyme cells condense and cartilage differentiates producing oversized cartilage anlages, rather than being a defect of bone cell-mediated apposition and modelling processes of bone.

View Article and Find Full Text PDF