Nowadays, society is oriented toward reducing the production of plastics, which have a significant impact on the environment. In this context, the recycling of existing plastic objects is currently a fundamental step in the mitigation of pollution. Very recently, the outstanding development of artificial intelligence (AI) has concerned and continues to involve a large part of the industrial and informatics sectors.
View Article and Find Full Text PDFHistidine kinases (HKs) are a central part of bacterial environmental-sensing two-component systems. They provide their hosts with the ability to respond to a wide range of physical and chemical signals. HKs are multidomain proteins consisting of at least a sensor domain, dimerization and phosphorylation domain (DHp), and a catalytic domain.
View Article and Find Full Text PDFElectroactive coatings for smart wearable textiles based on a furan bio-epoxy monomer (BOMF) crosslinked with isophorone diamine (IPD) and additivated with carbon nanotubes (CNTs) are reported herein. The effect of BOMF/IPD molar ratio on the curing reaction, as well as on the properties of the crosslinked resins was first assessed, and it was found that 1.5:1 BOMF/IPD molar ratio provided higher heat of reaction, glass transition temperature, and mechanical performance.
View Article and Find Full Text PDFSmart protective coatings and devices are currently of great interest. In particular, they can absorb or reflect harmful waves of electromagnetic interference (EMI). In this work, novel binary and ternary composites with highly amorphous poly(vinyl alcohol) (HAVOH) as a matrix and single-walled carbon nanotubes (SWCNTs) and MXenes as nanofillers were prepared.
View Article and Find Full Text PDFThis work proposes a biorefinery approach for utilizing tomato pomace (TP) through a top-down deconstructing strategy, combining mild chemical hydrolysis with high-pressure homogenization (HPH). The objective of the study is to isolate cellulose pulp using different combinations of chemical and physical processes: (i) direct HPH treatment of the raw material, (ii) HPH treatment following acid hydrolysis, and (iii) HPH treatment following alkaline hydrolysis. The results demonstrate that these isolation routes enable the production of cellulose with tailored morphological properties from TP with higher yields (up to +21% when HPH was applied before hydrolysis and approximately +6% when applied after acid or after alkaline hydrolysis).
View Article and Find Full Text PDFSmart polymer coatings embedding stimuli-responsive corrosion inhibitor nanocarriers are commonly exploited, in the literature, for the development of high-performance active coatings. In this work, high-surface-area amino-functionalized mesoporous silica nanoparticles (MSN-NH) were developed with a one-step synthesis process and then functionalized with benzoyl chloride (MSN-BC) through a reaction with amino groups. MSN-BC are able to release benzoic acid (BA) in acid and alkaline conditions as a result of the hydrolysis of the pH-sensitive amide bond.
View Article and Find Full Text PDFA hybrid montmorillonite (MMT)/reduced graphene oxide (rGO) film was realised and used as a non-invasive sensor for the monitoring of water absorption and desorption in pristine and consolidated tuff stones. This film was obtained by casting from a water dispersion containing graphene oxide (GO), montmorillonite and ascorbic acid; then the GO component was thermo-chemically reduced and the ascorbic acid phase was removed by washing. The hybrid film showed electrical surface conductivity that varied linearly with the relative humidity, ranging from 2.
View Article and Find Full Text PDFPhosphorylation carries chemical information in biological systems. In two-component systems (TCSs), the sensor histidine kinase and the response regulator are connected through phosphoryl transfer reactions that may be uni- or bidirectional. Directionality enables the construction of complex regulatory networks that optimize signal propagation and ensure the forward flow of information.
View Article and Find Full Text PDFIn this work, engineered stimuli-responsive mesoporous silica nanoparticles (MSNs) were developed and exploited in polymer coatings as multifunctional carriers of a typical corrosion inhibitor, benzotriazole (BTA). In detail, a new capping system based on a BTA-silver coordination complex, able to dissolve in acid and alkaline conditions and to simultaneously tailor the BTA release and the capture of chloride ions, was properly designed and realized. Acrylic coatings embedding the engineered MSNs were deposited onto iron rebar samples and tested for their protective capability in acid and alkaline environments.
View Article and Find Full Text PDFMesoporous silica nanoparticles (MSN) have attracted increasing interest for their applicability as smart nanocarriers of corrosion inhibitors, due to their porous structure, resistance to main corrosive environments and good compatibility with polymer coatings. In this review, the main synthetic routes to obtain MSN with tailored textural properties, the design of different loading and stimuli-induced release strategies, the development of advanced organic nanocomposite coatings with MSN and the validation of their anticorrosive performances are reviewed and compared. Through a critical analysis of the literature, the most promising research trends and perspectives to exploit the highly interesting properties of MSN in advanced organic coatings are proposed.
View Article and Find Full Text PDFPurpose: Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis.
View Article and Find Full Text PDFInterferon-stimulated gene 15 ( was the first ubiquitin-like modifier protein identified that acts by protein conjugation (ISGylation) and is thought to modulate IFN-induced inflammation. Here, we report a new patient from a non-consanguineous Argentinian family, who was followed for recurrent ulcerative skin lesions, cerebral calcifications and lung disease. Whole Exome Sequencing (WES) revealed two novel compound heterozygous variants (c.
View Article and Find Full Text PDFHistidine kinases (HK) of bacterial two-component systems represent a hallmark of allosterism in proteins, being able to detect a signal through the sensor domain and transmit this information through the protein matrix to the kinase domain which, once active, autophosphorylates a specific histidine residue. Inactive-to-active transition results in a large conformational change that moves the kinase on top of the histidine. In the present work, we use several molecular simulation techniques (Molecular Dynamics, Hybrid QM/MM, and constant pH molecular dynamics) to study the activation and autophosphorylation reactions in WalK, a -acting HK.
View Article and Find Full Text PDFLab-on-a-Chip (LoC) devices are extremely promising in that they enable diagnostic functions at the point-of-care. Within this scope, an important goal is to design imaging schemes that can be used out of the laboratory. In this paper, we introduce and test a pocket holographic slide that allows digital holography microscopy to be performed without an interferometer setup.
View Article and Find Full Text PDFElectrophoresis (EP) and dielectrophoresis (DEP) are the two well-established methodologies to manipulate nanoparticles (NPs). Recently, DEP by a virtual electrode platform was demonstrated on ferroelectric substrates, where the driving force is due to the strong electric field generated by the pyroelectric effect, thus opening new scenarios for manipulating the matter. Such an innovative approach named pyroelectric-DEP has several advantages over traditional EP and DEP.
View Article and Find Full Text PDFIn this study, we report a direct writing method for the fabrication of microfluidic footpaths by pyro-electrohydrodynamic (EHD) jet printing. Here, we propose the use of a nozzle-free three-dimensional printing technique for the fabrication of printed structures that can be embedded in a variety of soft, transparent, flexible, and biocompatible polymers and thus easily integrated into lab-on-chip devices. We prove the advantage of the high resolution and flexibility of pyro-EHD printing for the realization of microfluidic channels well below the standard limit in dimension of conventional ink-jet printing technique and simply adaptable to the end-user desires in terms of geometry and materials.
View Article and Find Full Text PDF