Silica and silica based materials are widely used in chemistry and materials science due to their importance in many technological fields. The properties of these materials, which are crucial for their applications, are mainly determined by the presence of hydrogen bonding between surface silanols. Here, we present ab initio molecular dynamics simulations (AIMD) on different surfaces derived from the crystallographic α-quartz (100) and the α-cristobalite (001) and (101) faces, both free and at the interface with liquid water.
View Article and Find Full Text PDFThe adsorption of a single H(2)O and NH(3) molecule on different fully hydroxylated α-quartz, cristobalite, and tridymite surfaces has been studied at the B3LYP level of theory, within a periodic approach using basis sets of polarized triple-ζ quality and accounting for basis set superposition error (BSSE). Fully hydroxylated crystalline silica exhibits SiOH as terminal groups whose distribution and H-bond features depend on both the considered silica polymorph and the crystallographic plane, which gives rise to isolated, H-bond interacting SiOH pairs or infinitely connected H-bond chains. A key point of the present study is to understand how the H-bond features of a dry crystalline silica surface influence its adsorption properties.
View Article and Find Full Text PDF