This work aimed to investigate the evolution of phenolic compounds and elements during the aging of Malbec red wines from different regions of Mendoza (Argentina) and California (United States). The profiles of low molecular weight polyphenols and anthocyanins were analyzed using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), and the elemental composition using microwave plasma-Atomic emission spectrometry (MP-AES). Through uni- and multivariate statistical analyses, the effects of aging time and region on wine were investigated.
View Article and Find Full Text PDFWe report results obtained from molecular dynamics (MD) experiments of benzylhexadecyldimethylammonium chloride (BHDC) cationic reverse micelles (RMs). In particular we analyzed equilibrium and dynamical characteristics of water/BHDC RMs in pure benzene, at two different water/BHDC ratios (W0 = 5 and W0 = 10). The RMs appear as elliptical aggregates with eccentricities close to ∼0.
View Article and Find Full Text PDFWe have investigated the water/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/n-heptane:benzene reverse micelles (RMs) interfaces properties using 6-propionyl-2-(N,N-dimethyl)aminonaphthalene, PRODAN, as molecular probe. We have used absorption and emission (steady-state and time-resolved) spectroscopy of PRODAN to monitor the changes in the RMs interface functionalities upon changing the external organic solvent blend. We demonstrate that PRODAN is a useful probe to investigate how the external solvent composition affects the micelle interface properties.
View Article and Find Full Text PDFWe have investigated, for the first time, the effect of the composition of the nonpolar organic media on the benzyl-n-hexadecyl-dimethylammonium chloride (BHDC) reversed micelles (RMs) properties at fixed temperature. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as absorption probe and dynamic light scattering (DLS), to monitor droplet sizes, interfacial micropolarity, and sequestrated water structure of water/BHDC/n-heptane:benzene RMs. DLS results confirm the formation of the water/BHDC/n-heptane:benzene RMs at every n-heptane mole fraction (X(Hp)) investigated, that is, X(Hp) = 0.
View Article and Find Full Text PDF