Objectives: The Florida-sleeve is a valve-sparing technique that causes minimal interference to leaflet kinematics and aortic root dynamism. The aim of this in vitro study was to evaluate the effects of the Florida-sleeve and Yacoub techniques on aortic leaflet kinematics.
Methods: Two groups of 6 whole porcine hearts were treated with either the Florida-sleeve technique or the Yacoub technique and tested in a pulsatile loop.
J Cardiovasc Transl Res
June 2021
Transcatheter therapies are emerging for functional mitral regurgitation (FMR) treatment, however there is lack of pathological models for their preclinical assessment. We investigated the applicability of deer hearts for this purpose.8 whole deer hearts were housed in a pulsatile flow bench.
View Article and Find Full Text PDFPurpose: We exploited 4-dimensional flow magnetic resonance imaging (4D Flow), combined with a standardized in vitro setting, to establish a comprehensive benchmark for the systematic hemodynamic comparison of surgical aortic bioprosthetic valves (BPVs).
Materials And Methods: 4D Flow analysis was performed on two small sizes of three commercialized pericardial BPVs (Trifecta™ GT, Carpentier-Edwards PERIMOUNT Magna and Crown PRT®). Each BPV was tested over a clinically pertinent range of continuous flow rates within an in vitro MRI-compatible system, equipped with pressure transducers.
Background: Bioprostheses are complex structures and yield a very complex fluid dynamics. Hence, it can be hypothesized that prosthesis structural characteristics affect the position of the vena contracta and, consequently, influences the pattern and the extent of pressure recovery downstream from the vena contracta.
Materials And Methods: The study was performed on pericardial aortic prostheses, specifically Crown 21 and 23 (LivaNova PLC, UK), Trifecta 19 and 21 (Edwards Lifescience, USA), and Magna 19 and 21(Abbott, USA), tested in an "ad hoc" devised steady flow loop circuit at four flow rates (10, 15, 20, and 25 L/min).
Severity of aortic coarctation (CoA) is currently assessed by estimating trans-coarctation pressure drops through cardiac catheterization or echocardiography. In principle, more detailed information could be obtained non-invasively based on space- and time-resolved magnetic resonance imaging (4D flow) data. Yet the limitations of this imaging technique require testing the accuracy of 4D flow-derived hemodynamic quantities against other methodologies.
View Article and Find Full Text PDFFunctional mitral regurgitation (FMR) is a complex pathology involving valvular and subvalvular structures reconfiguration, and its treatment is considered challenging. There is a lack of experimental models allowing for reliable preclinical FMR treatments' evaluation in a realistic setting. A novel approach to simulate FMR was developed and incorporated into an ex vivo passive beating heart platform.
View Article and Find Full Text PDFEur J Cardiothorac Surg
December 2017
Objectives: The main reason for aortic repair failures is recurrent annular dilatation. The fibrous portion of left ventricular outflow tract dilates. A novel device was designed to tackle this problem.
View Article and Find Full Text PDFCurrently, clinicians are seeking new, minimally invasive treatment options for functional tricuspid regurgitation (FTR). Challenging tricuspid complexity requires the evaluation of the treatment techniques in adequate and realistic preclinical scenario. The purpose of this article is to describe the design and functional assessment of a novel passive beating heart model of the pulmonary circulation with the possibility to tightly control FTR.
View Article and Find Full Text PDFSeveral novel approaches were recently developed to treat aortic root pathologies. The alteration induced by some of these approaches to the biomechanics of the aortic root could possibly affect the coronary perfusion, compromising the procedural outcome. In this scenario, the need to replicate in vitro the coronary flow pattern in physiological and pathological conditions is becoming crucial for the functional assessment of novel devices and techniques.
View Article and Find Full Text PDFMitraclip implantation is widely used as a valid alternative to conventional open-chest surgery in high-risk patients with severe mitral valve (MV) regurgitation. Although effective in reducing mitral regurgitation (MR) in the majority of cases, the clip implantation produces a double-orifice area that can result in altered MV biomechanics, particularly in term of hemodynamics and mechanical stress distribution on the leaflets. In this scenario, we combined the consistency of in vitro experimental platforms with the versatility of numerical simulations to investigate clip impact on MV functioning.
View Article and Find Full Text PDFBackground: Although associated with left heart pathologies, functional tricuspid regurgitation (FTR) is often left untreated during left heart surgery. Hence, owing to its degenerative character, reoperation is often needed, encompassing an impressive (25% to 35%) mortality rate. Thus transcatheter approaches to FTR are raising great interest.
View Article and Find Full Text PDF