Summary: Pedigree-based analyses' prime role is to unravel relationships between individuals in breeding programs and germplasms. This is critical information for decoding the genetics underlying main inherited traits of relevance, and unlocking the genotypic variability of a species to carry out genomic selections and predictions. Despite the great interest, current lineage visualizations become quite limiting in terms of public display, exploration, and tracing of traits up to ancestral donors.
View Article and Find Full Text PDFAdvancements in genome sequencing have facilitated whole-genome characterization of numerous plant species, providing an abundance of genotypic data for genomic analysis. Genomic selection and neural networks (NNs), particularly deep learning, have been developed to predict complex traits from dense genotypic data. Autoencoders, an NN model to extract features from images in an unsupervised manner, has proven to be useful for plant phenotyping.
View Article and Find Full Text PDFBackground: The study of plant photosynthesis is essential for productivity and yield. Thanks to the development of high-throughput phenotyping (HTP) facilities, based on chlorophyll fluorescence imaging, photosynthetic traits can be measured in a reliable, reproducible and efficient manner. In most state-of-the-art HTP platforms, these traits are automatedly analyzed at individual plant level, but information at leaf level is often restricted by the use of manual annotation.
View Article and Find Full Text PDFBackground: Genome complexity is largely linked to diversification and crop innovation. Examples of regions with duplicated genes with relevant roles in agricultural traits are found in many crops. In both duplicated and non-duplicated genes, much of the variability in agronomic traits is caused by large as well as small and middle scale structural variants (SVs), which highlights the relevance of the identification and characterization of complex variability between genomes for plant breeding.
View Article and Find Full Text PDFThe red to blue hue of plant organs is caused due to anthocyanins, which are water-soluble flavonoid pigments. The accumulation of these pigments is regulated by a complex of R2R3-MYB transcription factors (TFs), basic-helix-loop-helix (bHLH), and WD-repeat (WDR) proteins (MBW complex). In Rosaceae species, R2R3-MYBs, particularly MYB10 genes, are responsible for part of the natural variation in anthocyanin colors.
View Article and Find Full Text PDFGene co-expression networks are a powerful type of analysis to construct gene groupings based on transcriptomic profiling. Co-expression networks make it possible to discover modules of genes whose mRNA levels are highly correlated across samples. Subsequent annotation of modules often reveals biological functions and/or evidence of cellular specificity for cell types implicated in the tissue being studied.
View Article and Find Full Text PDF