In this work, we focus on the philosophical aspects and technical challenges that underlie the axiomatization of the non-Kolmogorovian probability framework, in connection with the problem of quantum contextuality. This fundamental feature of quantum theory has received a lot of attention recently, given that it might be connected to the speed-up of quantum computers-a phenomenon that is not fully understood. Although this problem has been extensively studied in the physics community, there are still many philosophical questions that should be properly formulated.
View Article and Find Full Text PDFIn this paper, we examined the connection between quantum systems' indistinguishability and signed (or negative) probabilities. We do so by first introducing a measure-theoretic definition of signed probabilities inspired by research in quantum contextuality. We then argue that ontological indistinguishability leads to the no-signaling condition and negative probabilities.
View Article and Find Full Text PDFIn this work, we discuss the failure of the principle of truth functionality in the quantum formalism. By exploiting this failure, we import the formalism of N-matrix theory and non-deterministic semantics to the foundations of quantum mechanics. This is done by describing quantum states as particular valuations associated with infinite non-deterministic truth tables.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2019
In this work, we discuss a formal way of dealing with the properties of contextual systems. Our approach is to assume that properties describing the same physical quantity, but belonging to different measurement contexts, are indistinguishable in a strong sense. To construct the formal theoretical structure, we develop a description using quasi-set theory, which is a set-theoretical framework built to describe collections of elements that violate Leibnitz's principle of identity of indiscernibles.
View Article and Find Full Text PDFThe VII Conference on Quantum Foundations: 90 years of uncertainty (https://sites [...
View Article and Find Full Text PDFIn this work we advance a generalization of quantum computational logics capable of dealing with some important examples of quantum algorithms. We outline an algebraic axiomatization of these structures.
View Article and Find Full Text PDFBased on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes.
View Article and Find Full Text PDF