Publications by authors named "Federico Focher"

Article Synopsis
  • The manuscript presents the design and evaluation of new benzoxazinone and indole compounds aimed at protecting neurons by inhibiting the enzymes hAK and hGSK-3β.
  • It utilizes molecular docking analyses to identify structural features essential for targeting these proteins' allosteric sites, leading to the synthesis of various compounds.
  • Results show that the identified compounds, particularly 5l, effectively reduce oxidative stress and exhibit antioxidant properties without causing cytotoxic effects, positioning 5l as a promising candidate for treating neurodegenerative diseases.
View Article and Find Full Text PDF

Background: Emergence of drug-resistant Plasmodium falciparum has created an urgent need for new drug targets. DNA polymerase δ is an essential enzyme required for chromosomal DNA replication and repair, and therefore may be a potential target for anti-malarial drug development. However, little is known of the characteristics and function of this P.

View Article and Find Full Text PDF

Background: Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model.

Methods: Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug.

Results: Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice.

View Article and Find Full Text PDF

Most nucleoside kinases, besides the catalytic domain, feature an allosteric domain which modulates their activity. Generally, non-substrate analogs, interacting with allosteric sites, represent a major opportunity for developing more selective and safer therapeutics. We recently developed a series of non-nucleoside non-competitive inhibitors of human adenosine kinase (hAK), based on a pyrrolobenzoxa(thia)zepinone scaffold.

View Article and Find Full Text PDF

Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process.

View Article and Find Full Text PDF

Based on the finding that aerobic Gram-positive antibacterials that inhibit DNA polymerase IIIC (pol IIIC) were potent inhibitors of the growth of anaerobic Clostridium difficile (CD) strains, we chose to clone and express the gene for pol IIIC from this organism. The properties of the recombinant enzyme are similar to those of related pol IIICs from Gram-positive aerobes, e.g.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) types 1 and 2 thymidine kinases (TK) are responsible for phosphorylation of antiherpes acyclonucleosides such as acyclovir (ACV) and 9-(4-hydroxybutyl)guanine (HBG). Related compounds, the N-phenyl-9-(hydroxyalkyl)guanines, are devoid of direct antiviral activity, but potently inhibit the viral TKs and block viral reactivation from latency . The similarity in structure between the acyclonucleosides and TK inhibitors raised the question of the relevance of phosphorylation of certain of the latter analogs in their mechanisms of action.

View Article and Find Full Text PDF

We investigated some pyrrolobenzoxazepinone (PBOs, 3e-i) analogues of early described effective non-nucleoside inhibitors of HIV-1 reverse transcriptase (RT). Enzymological studies of 3e-i enantiomers, with wild type (wt) RT and some drug-resistant mutants, revealed a stereoselective mode of action and selectivity for RT ternary complex. Unexpectedly (+)-3g was found more potent towards the L100I mutant than towards the wt RT, whereas (+)-3h inhibited the K103N mutant and RT wt with comparable potency.

View Article and Find Full Text PDF

Adenosine kinase (AK) catalyzes the phosphorylation of adenosine (Ado) to AMP by means of a kinetic mechanism in which the two substrates Ado and ATP bind the enzyme in a binary and/or ternary complex, with distinct protein conformations. Most of the described inhibitors have Ado-like structural motifs and are nonselective, and some of them (e.g.

View Article and Find Full Text PDF

2-Phenylamino-6-oxo-9-(4-hydroxybutyl)purine (HBPG) is a thymidine kinase inhibitor that prevents encephalitic death in mice caused by herpes simplex virus (HSV) types 1 and 2, although its potency is somewhat less than that of acyclovir (ACV). The present study was undertaken to determine the effect of combinations of HBPG and either ACV, phosphonoformate (PFA), or cidofovir (CDF) against HSV encephalitis. BALB/c mice were given ocular infections with HSV-1 or HSV-2, and treated twice daily intraperitoneally for five days with HBPG, alone or in combination with ACV, PFA, or CDF.

View Article and Find Full Text PDF

Herpes B virus (B virus [BV]) is a macaque herpesvirus that is occasionally transmitted to humans where it can cause rapidly ascending encephalitis that is often fatal. To understand the low susceptibility of BV to the acyclonucleosides, we have cloned, expressed, and characterized the BV thymidine kinase (TK), an enzyme that is expected to "activate" nucleoside analogs. This enzyme is similar in sequence and properties to the TK of herpes simplex virus (HSV), i.

View Article and Find Full Text PDF

A human T-lymphoblastoid cell line that is resistant to the antiviral activity of zidovudine (ZDV) and moderately resistant to lamivudine (3TC) has been obtained as a result of prolonged treatment with a combination of three nucleoside analogues (NA), ZDV, 3TC, and abacavir (ABV). These cells, called CEM(ZLA), are fully sensitive to ABV. The cellular resistance of the CEM(ZLA) cells to ZDV correlates with significant reductions in thymidine kinase (TK) activity and in the amount of intracellular TK protein.

View Article and Find Full Text PDF

A set of deazaguanine derivatives 1-3 targeting human purine nucleoside phosphorylase (hPNP) have been designed and synthesized. The new compounds are characterized by the presence of a structurally simplified "azasugar" motif to be more easily accessible by chemical synthesis than previous inhibitors. In the enzymatic assays, some of the new derivatives proved to be able to inhibit hPNP at low nanomolar concentration, thereby showing the same inhibitory potency in vitro as immucillin-H (IMH).

View Article and Find Full Text PDF

Derivatives of the herpes simplex thymidine kinase inhibitor HBPG [2-phenylamino-9-(4-hydroxybutyl)-6-oxopurine] have been synthesized and tested for inhibitory activity against recombinant enzymes (TK) from herpes simplex types 1 and 2 (HSV-1, HSV-2). The compounds inhibited phosphorylation of [3H]thymidine by both enzymes, but potencies differed quantitatively from those of HBPG and were generally greater for HSV-2 than HSV-1 TKs. Changes in inhibitory potency were generally consistent with the inhibitor/substrate binding site structure based on published X-ray structures of HSV-1 TK.

View Article and Find Full Text PDF

New 5-chloro-6-substituted-uracil derivatives have been prepared by microwave assisted-synthesis and tested in vitro as thymidine phosphorylase inhibitors. One of these compounds showed potent inhibitory activity, with an IC50 value in the submicromolar range. The biological activity of the new compounds is discussed in terms of structure-activity relationship.

View Article and Find Full Text PDF

It has been proposed that the declining efficiency of antiretroviral agents in human immunodeficiency virus (HIV) infection may also depend on cellular factors at their site of action. Two in particular have been proposed: (i) the defective intracellular metabolism of NRTI in target cells and the altered uptake; and (ii) efflux of nucleoside reverse transcriptase inhibitors (NRTI) and protease inhibitors (PI) by cellular transporter molecules. Several studies have shown that: changes in the activities of various purine and pyrimidine biosynthetic enzymes may occur in lymphocytes of HIV-infected patients; HIV-infected patients on prolonged treatment with nucleoside analogues, e.

View Article and Find Full Text PDF

Continuing our investigations on inhibitors of ribonucleotide reductase (RNR), the crucial enzyme that catalyses the reduction of ribonucleotides to deoxyribonucleotides, we have now prepared and evaluated 5'-phosphonoacetic acid, amide and ester analogues of adenosine, uridine and cytidine with the aim to verify both substrate specificity and contribution to biological activity of diphosphate mimic moieties. A molecular modelling study has been conducted on the RNR R1 subunit, in order to verify the possible interaction of the proposed bioisosteric moieties. The study compounds were finally tested on the recombinant murine RNR showing a degree of inhibition that ranged from 350 microM for the UDP analogue 5'-deoxy-5'-N-(phosphon-acetyl)uridine sodium salt (amide) to 600 microM for the CDP analogue 5'-O-[(diethyl-phosphon)acetyl]cytidine (ester).

View Article and Find Full Text PDF

The enantioselectivity of enzymes, namely the property of enzymes to recognise and metabolise only one of the two enantiomers of chiral molecules, is related to the chiral structure of the enzymes, reflecting the three-dimensional folding of the polypeptide backbone and the orientation of the amino acid side chains in the folded molecule. Because of the chirality of the amino acids (L), the chemistry of life should be highly sensitive to different enantiomers of chiral substrates. However, in a world consisting only of D-nucleosides and L-amino acids, an enzyme which lacks enantio-selectivity does not reduce its fitness, since there is no chance of molecular misunderstanding when no other choice is available.

View Article and Find Full Text PDF

Novel nucleoside analogues of both D and L enantiomeric series were prepared by coupling reaction between a 2',3'-dideoxy-3'-modified furanose moiety and four different nucleobases. Though in all cases anomeric mixtures of nucleosides were obtained, the presence of the sterically bulky 3'-tris(methylthio)methyl group allowed a good stereoselectivity level. All the compounds of both enantiomeric series showed high IC(50) values as HSV-1 TK inhibitors and scarce ability to be phosphorylated by HSV-1 TK.

View Article and Find Full Text PDF

It has been demonstrated that prolonged treatment with nucleoside analogues, such as 3'-azido-3'-deoxythymidine (zidovudine), 2',3'-dideoxycytidine (zalcitabine) and 9-(2-phosphonylmethoxyethyl) adenine (PMEA), may cause selection of cells that are resistant to their anti-HIV activity. A human T-lymphoblastoid cell line that is resistant to the antiviral and cytotoxic activity of 2',3'-didehydro-3'-deoxythymidine (stavudine) has developed as a result of prolonged treatment. These cells, called CEMstavudine, are also less sensitive to zidovudine.

View Article and Find Full Text PDF