Purpose: Radiation doses to adult patients submitted to cerebral angiography and intracranial aneurysms treatments were assessed by using DICOM Radiation Dose Structured Reports (RDSR) and Monte Carlo simulations. Conversion factors to estimate effective and organ doses from Kerma-Area Product (P) values were determined.
Methods: 77 cerebral procedures performed with five angiographic equipment installed in three Italian centres were analyzed.
Functional parameters from positron emission tomography (PET) seem promising biomarkers in various lymphoma subtypes. This study investigated the prognostic value of PET radiomics in diffuse large B-cell lymphoma (DLBCL) patients treated with R-CHOP given either every 14 (testing set) or 21 days (validation set). Using the PyRadiomics Python package, 107 radiomics features were extracted from baseline PET scans of 133 patients enrolled in the Swiss Group for Clinical Cancer Research 38/07 prospective clinical trial (SAKK 38/07) [ClinicalTrial.
View Article and Find Full Text PDFObjective: To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features.
Method: The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS.
Purpose: In recent years, there has been growing interest in the use of gold nanoparticles (GNPs) combined with radiotherapy to improve tumor control. However, the complex interplay between GNP uptake and dose distribution in realistic clinical treatment are still somewhat unknown.
Methods: The effects of different concentrations of 2 nm diameter GNP, ranging from 0 to 5×105 nanoparticles per tumoral cell, were theoretically investigated.
Purpose: Gold nanoparticles (GNPs) are being proposed in combination with radiotherapy to improve tumor control. However, the exact mechanisms underlying GNP radiosensitization are yet to be understood, thus, we present a new approach to estimate the nanoparticle-driven increase in radiosensitivity.
Methods: A stochastic radiobiological model, derived from the Local Effect Model (LEM), was coupled with Monte Carlo simulations to estimate the increase in radiosensitivity produced by the interactions between photons and GNPs at nanometric scale.
Purpose: Advanced ion beam therapeutic techniques, such as hypofractionation, respiratory gating, or laser-based pulsed beams, have dose rate time structures which are substantially different from those found in conventional approaches. The biological impact of the time structure is mediated through the β parameter in the linear quadratic (LQ) model. The aim of this study was to assess the impact of changes in the value of the β parameter on the treatment outcomes, also accounting for noninstantaneous intrafraction dose delivery or fractionation and comparing the effects of using different primary ions.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.