Biotechnol Biofuels Bioprod
February 2023
Background: Microalgae represent a suitable and eco-sustainable resource for human needs thanks to their fast growth ability, together with the great diversity in species and intracellular secondary bioactive metabolites. These high-added-value compounds are of great interest for human health or animal feed. The intracellular content of these valuable compound families is tightly associated with the microalgal biological state and responds to environmental cues, e.
View Article and Find Full Text PDFMicroalgal biotechnology is gaining importance. However, key issues in the pipeline from species selection towards large biomass production still require improvements to maximize the yield and lower the microalgal production costs. This study explores a co-cultivation strategy to improve the bioactive compounds richness of the harvested microalgal biomass.
View Article and Find Full Text PDFMicroalgal growth maximization is becoming a duty for enhancing the biotechnological fate of these photosynthetic microorganisms. This study, based on an extensive set of data, aims to revisit diatom's cultivation in laboratory with the objective to increase growth rate and biomass production. We investigated the growth ability and resource requirements of the coastal diatom Skeletonema marinoi Sarno & Zingone grown in laboratory in the conventional f/2 medium with aeration and in two modified conditions: (i) the same medium with water movement inside and (ii) an enriched medium with the same water movement.
View Article and Find Full Text PDFPhotosynthesis is known to produce reactive oxygen species together with the transformation of light into biochemical energy. To fill the gap of the knowledge on the protective antioxidant network of microalgae, a series of experiments to explore the role of spectral composition and intensity of light in the modulation of the photodefence mechanisms developed by the coastal diatom Skeletonema marinoi were performed. The modulation of the total phenolic content, ascorbic acid and the enzymes glutathione reductase, catalase, ascorbate peroxidase and superoxide dismutase together with xanthophyll cycle and non-photochemical quenching in response to variations in the light environment were analysed.
View Article and Find Full Text PDFThe biochemical profile and growth of the coastal diatom Skeletonema marinoi was investigated under four different daily blue light doses (sinusoidal light peaking at 88, 130, 250 and 450 μmol photons m(−2) s(−1), respectively). Ability of cells to regulate the light energy input caused alterations in growth and different biosynthetic pathways. The light saturation index for photosynthesis (E(k)), which governs the photoacclimative processes, ranged between 250 and 300 μmol photons m(−2) s(−1).
View Article and Find Full Text PDFIn this review, we aim to explore the potential of microalgal biodiversity and ecology for biotechnological use. A deeper exploration of the biodiversity richness and ecophysiological properties of microalgae is crucial for enhancing their use for applicative purposes. After describing the actual biotechnological use of microalgae, we consider the multiple faces of taxonomical, morphological, functional and ecophysiological biodiversity of these organisms, and investigate how these properties could better serve the biotechnological field.
View Article and Find Full Text PDFPhytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata.
View Article and Find Full Text PDF