Publications by authors named "Federico Cazzaniga"

The pathological process of prion diseases implicates that the normal physiological cellular prion protein (PrP) converts into misfolded abnormal scrapie prion (PrP) through post-translational modifications that increase β-sheet conformation. We recently demonstrated that HuPrP(90-231) thermal unfolding is partially irreversible and characterized by an intermediate state (β-PrPI), which has been revealed to be involved in the initial stages of PrP fibrillation, with a seeding activity comparable to that of human infectious prions. In this study, we report the thermal unfolding characterization, in cell-mimicking conditions, of the truncated (HuPrP(90-231)) and full-length (HuPrP(23-231)) human prion protein by means of CD and NMR spectroscopy, revealing that HuPrP(90-231) thermal unfolding is characterized by two successive transitions, as in buffer solution.

View Article and Find Full Text PDF

Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species.

View Article and Find Full Text PDF

Background: Heterozygous mutations in the gene, encoding the lysosomal enzyme β-glucocerebrosidase (GCase), are the most frequent genetic risk factor for Parkinson's disease (PD). -related PD (GBA-PD) patients have higher risk of dementia and reduced survival than non-carriers. Preclinical studies and one open-label trial in humans demonstrated that the chaperone ambroxol (ABX) increases GCase levels and modulates α-synuclein levels in the blood and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

The presence of protein aggregates is a hallmark of many neurodegenerative diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD). Traditionally, each disease has been associated with the aggregation of specific proteins, which serve as disease-specific biomarkers. For example, aggregates of α-synuclein (α-syn) are found in α-synucleinopathies such as PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA).

View Article and Find Full Text PDF

Neurodegenerative diseases are often characterized by the codeposition of different amyloidogenic proteins, normally defining distinct proteinopathies. An example is represented by prion diseases, where the classical deposition of the aberrant conformational isoform of the prion protein (PrP) can be associated with tau insoluble species, which are usually involved in another class of diseases called tauopathies. How this copresence of amyloidogenic proteins can influence the progression of prion diseases is still a matter of debate.

View Article and Find Full Text PDF
Article Synopsis
  • The current Alzheimer's disease diagnosis relies on various clinical and laboratory tests, but there's a risk of misdiagnosis due to symptom overlap with other dementias.
  • A new diagnostic method combines seed amplification assay (SAA) for enhanced sensitivity and surface-enhanced Raman spectroscopy (SERS) for unique specificity to detect brain biomarkers.
  • This SAA-SERS technique, aided by machine learning, effectively identifies problematic Aβ oligomers in the cerebrospinal fluid, enabling earlier patient stratification for treatments and clinical trials.
View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is a brain disorder that can cause problems with smell and digestion before the main symptoms appear.
  • People with PD often have trouble smelling, swallowing, and digesting food.
  • New research suggests that tiny germs in our gut and nose might help cause PD by affecting a protein in the brain called α-synuclein.
View Article and Find Full Text PDF
Article Synopsis
  • Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare brain disorder caused by improperly folded prion proteins, with different strains linked to genetic variations and outcomes.
  • Diagnosis of sCJD typically occurs post-mortem through brain analysis, but new techniques like Real-Time Quaking-Induced Conversion (RT-QuIC) have shown prion proteins can also be found in the olfactory mucosa (OM) of living patients.
  • An optimized method called protein misfolding cyclic amplification (PMCA) successfully detected prion proteins in OM samples with high sensitivity (79.3%) and specificity (100%), although it didn't differentiate sCJD subtypes from living patients
View Article and Find Full Text PDF

Parkinson's disease (PD) and multiple system atrophy (MSA) are caused by two distinct strains of disease-associated α-synuclein (αSyn). Recently, we have shown that olfactory mucosa (OM) samples of patients with PD and MSA can seed the aggregation of recombinant α-synuclein by means of Real-Time Quaking-Induced Conversion (αSyn_RT-QuIC). Remarkably, the biochemical and morphological properties of the final α-synuclein aggregates significantly differed between PD and MSA seeded samples.

View Article and Find Full Text PDF

Background: Detection of the pathological and disease-associated alpha-synuclein (αSyn) in the brain is required to formulate the definitive diagnosis of multiple system atrophy (MSA) and Parkinson's disease (PD). We recently showed that αSyn can be detected in the olfactory mucosa (OM) of MSA and PD patients. For this reason, we have performed the first interlaboratory study based on α-synuclein Real-Time Quaking-Induced Conversion (αSyn_RT-QuIC) analysis of OM samples collected from PD and MSA patients with the parkinsonian (MSA-P) and cerebellar (MSA-C) phenotypes.

View Article and Find Full Text PDF

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare and fatal neurodegenerative disorder with an incidence of 1.5 to 2 cases per million population/year. The disease is caused by a proteinaceous infectious agent, named prion (or PrPSc), which arises from the conformational conversion of the cellular prion protein (PrPC).

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most common neurodegenerative movement disorder. The neuropathological hallmark of the disease is the loss of dopamine neurons of the substantia nigra pars compacta. The clinical manifestations of PD are bradykinesia, rigidity, resting tremors and postural instability.

View Article and Find Full Text PDF

Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA).

Methods: In this work, we have challenged PMCA-generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.

View Article and Find Full Text PDF

Background And Objective: Despite integrase strand transfer inhibitor (INSTI)-containing regimens now being considered a preferred option for both initial therapy and switching strategies in virologically suppressed patients, their effects on lymphocyte phenotypes and functions in the course of effective combination antiretroviral therapy (cART) are still unclear. Thus, we investigated the effect of a 24-week elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate (EVG/c/FTC/TDF) regimen on the T cell compartment and HIV reservoirs in HIV-infected patients switching from a suppressive protease inhibitor-based regimen.

Methods: Thirty HIV-positive patients receiving suppressive tenofovir disoproxil fumarate/emtricitabine (TDF + FTC) (for a median of 5 years) in association with either darunavir/ritonavir (DVR/r) (47%) or atazanavir/ritonavir (ATV/r) (53%) were followed up for 24 weeks after switching to EVG/c/FTC/TDF.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder whose diagnosis is often challenging because symptoms may overlap with neurodegenerative parkinsonisms. PD is characterized by intraneuronal accumulation of abnormal α-synuclein in brainstem while neurodegenerative parkinsonisms might be associated with accumulation of either α-synuclein, as in the case of Multiple System Atrophy (MSA) or tau, as in the case of Corticobasal Degeneration (CBD) and Progressive Supranuclear Palsy (PSP), in other disease-specific brain regions. Definite diagnosis of all these diseases can be formulated only neuropathologically by detection and localization of α-synuclein or tau aggregates in the brain.

View Article and Find Full Text PDF

Prion diseases are a group of neurodegenerative disorders associated with the conformational conversion of the cellular prion protein (PrP) into an abnormal misfolded form named PrP. Other than accumulating in the brain, PrP can bind PrP and force it to change conformation to PrP. The exact mechanism which underlies the process of PrP/PrP conversion still needs to be defined and many molecules or cofactors might be involved.

View Article and Find Full Text PDF

In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) pathway could be responsible for the immune hyperactivation seen in these patients. PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls were stimulated with a panel of TLR agonists.

View Article and Find Full Text PDF