Publications by authors named "Federico Caneva-Soumetz"

We have fabricated nanoporous alumina surfaces by means of anodization in oxalic acid in different conditions and used them as the substrates for the growth of cells from a human osteoblast-like cell line. The rough nanoporous alumina substrates have been compared both with smooth standard Petri dishes used as the control and with commercial substrates of similar material. The viability of the cells has been assessed at different culture times of 4, 11, 18, and 25 days in vitro.

View Article and Find Full Text PDF

Nanostructured polymeric capsules are regarded as highly promising systems with different potential applications ranging from drug delivery, biosensing and artificial cells. To fully exploit this potential, it is required to produce bio-activated stable and biocompatible capsules. To this purpose, in present work we proposed the combination of the layer-by-layer self assembly method with bacterial S-layer technology to fabricate stable and biocompatible polymeric capsules having a well defined arrangement of functional groups allowing the covalent attachment of antibody molecules.

View Article and Find Full Text PDF

The protein collagen is the major component of connective tissue and it is involved in many biological functions. Its degradation is at the basis of different pathological processes. The up-regulated expression of matrix metalloproteinases and the down-regulated expression of their inhibitors are the causes for such degradation.

View Article and Find Full Text PDF

The Oriented architecture of macromolecules plays a critical role in many aspects of Nanobiotechnology such as in the development of biosensors. To this regard, S-layers which constitute the outermost cell envelope component of many prokaryotic organisms, represent unique self assembled systems with the capability to rearrange into monomolecular and oriented arrays. These properties can be exploited to promote their crystallization on surfaces (e.

View Article and Find Full Text PDF

Nanomagnetic particles have been already taken into account as drug carriers thank to the possibility to control their movement to a specific location where the treatment is required by means of high gradient magnetic fields (HGMF). In this work the layer-by-layer technique (LbL) and nanomagnetic particles were used to developed innovative nanostructured magnetic capsules (NSMC). Their potential application as magnetic drug carriers was investigated under the influence of both static and oscillating magnetic fields used respectively to control capsule displacement and shell permeability.

View Article and Find Full Text PDF

The transforming growth factor beta1 (TGF-beta1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-beta1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane.

View Article and Find Full Text PDF

Monoclonal antibodies were immobilized onto the surface of quartz crystals for the development of a piezoelectric biosensor by means of the Layer by Layer self assembly technique (LBL). The immobilization of immunoglobulins specific to the matrix metalloproteinase-1 (MMP-1) was investigated. To this purpose multilayered ultra-thin films composed by precursor layers of cationic poly(dimethyldiallylammonium) chloride and anionic poly(styrenesulfonate) followed by a monolayer of antibodies were assembled by LBL.

View Article and Find Full Text PDF

Paclitaxel is one of the anticancer agents most often used in clinical oncology practice for the treatment of ovarian, breast and non-small cell lung cancers. Nanoengineered polymeric capsules (NPCs) represent a new and very effective tool for the encapsulation and smart release of different compounds. In present work capsules were fabricated by means of the layer-by-layer assembly of oppositely charged polyelectrolytes onto colloidal particles, followed by removal of the cores at low pH to obtain hollow microcapsules.

View Article and Find Full Text PDF

Monoclonal antibodies were immobilized onto the surface of quartz crystals for the development of piezoelectric biosensors by means of the Layer by Layer self assembly technique (LBL). Specifically, the immobilization of immunoglobulins specific to the human cytokine Transforming Growth Factor Beta1 and to taxol was investigated. To this purpose multilayered ultra-thin films composed by precursor layers of cationic poly(dimethyldiallylammonium) chloride and anionic poly(styrenesulfonate) followed by a monolayer of antibodies were assembled by LBL.

View Article and Find Full Text PDF

Cells are sensitive both to the micro/nanotopographic and chemical features of their surrounding environment. The engineering of the surface properties of biomaterials is then critical to develop bioactive devices with which to elicit appropriate cellular responses. To this regard, the layer by layer (LBL) self assembly technique represents a simple and versatile method to modify surface properties by the deposition of ultrathin films with specific and predetermined properties.

View Article and Find Full Text PDF

A construct based on the electrostatic layer-by-layer self assembly technique has been fabricated, to be used as a tailored device to encourage nerve regeneration. A multilayered nanocoating composed of three precursor bilayers of cationic poly(dimethyldiallylammonium) chloride (PDDA) and anionic poly(styrenesulfonate) (PSS), followed by bilayers of poly-D-lysine (PDL) and antibody specific to transforming growth factor 1 (anti-TGF-1), has been deposited on HYAFF 11. The assembly process has been monitored by quartz crystal microbalance (QCM) for its characterisation and then it has been used on HYAFF 11.

View Article and Find Full Text PDF