Publications by authors named "Federico C Beasley"

The NLRP3 inflammasome is an intracellular, multiprotein complex that promotes the auto-catalytic activation of caspase-1 and the subsequent maturation and secretion of the pro-inflammatory cytokines, IL-1β and IL-18. Persistent activation of the NLRP3 inflammasome has been implicated in the pathophysiology of a number of inflammatory and autoimmune diseases, including neuroinflammation, cardiovascular disease, non-alcoholic steatohepatitis, lupus nephritis and severe asthma. Here we describe the preclinical profile of JT002, a novel small molecule inhibitor of the NLRP3 inflammasome.

View Article and Find Full Text PDF

Cryptosporidiosis has emerged as a leading cause of non-viral diarrhea in children under five years of age in the developing world, yet the current standard of care to treat Cryptosporidium infections, nitazoxanide, demonstrates limited and immune-dependent efficacy. Given the lack of treatments with universal efficacy, drug discovery efforts against cryptosporidiosis are necessary to find therapeutics more efficacious than the standard of care. To date, cryptosporidiosis drug discovery efforts have been limited to a few targeted mechanisms in the parasite and whole cell phenotypic screens against small, focused collections of compounds.

View Article and Find Full Text PDF

Bacterial infections associated with methicillin-resistant Staphylococcus aureus (MRSA) are a major economic burden to hospitals, and confer high rates of morbidity and mortality among those infected. Exploitation of novel therapeutic targets is thus necessary to combat this dangerous pathogen. Here, we report on the identification and characterization, including crystal structures, of two nitric oxide synthase (NOS) inhibitors that function as antimicrobials against MRSA.

View Article and Find Full Text PDF

Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI.

View Article and Find Full Text PDF

Unlabelled: The M1T1 clone of group A Streptococcus (GAS) is associated with severe invasive infections, including necrotizing fasciitis and septicemia. During invasive M1T1 GAS disease, mutations in the covRS regulatory system led to upregulation of an ADP-ribosyltransferase, SpyA. Surprisingly, a GAS ΔspyA mutant was resistant to killing by macrophages and caused higher mortality with impaired bacterial clearance in a mouse intravenous challenge model.

View Article and Find Full Text PDF

Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encoding a homologue of the human TIR domain in S.

View Article and Find Full Text PDF
Article Synopsis
  • Group B Streptococcus (GBS) is a significant cause of sepsis and meningitis in newborns, and it interacts with immune cells through a specific surface component.
  • * Researchers used mice that lack the inhibitory Siglec-E protein to explore how GBS affects immune response during infection, discovering that GBS engagement with Siglec-E reduces inflammatory responses in certain conditions.
  • * The study found that while Siglec-E deficiency boosts the immune response and reduces GBS spread in some scenarios, it can lead to severe inflammation and increased mortality during high-dose infections.
View Article and Find Full Text PDF

Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from L-arginine.

View Article and Find Full Text PDF

Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders.

View Article and Find Full Text PDF

Background: Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves.

View Article and Find Full Text PDF

Staphylococcus aureus is a frequent cause of bloodstream, respiratory tract, and skin and soft tissue infections. In the bloodstream, the iron-binding glycoprotein transferrin circulates to provide iron to cells throughout the body, but its iron-binding properties make it an important component of innate immunity. It is well established that siderophores, with their high affinity for iron, in many instances can remove iron from transferrin as a means to promote proliferation of bacterial pathogens.

View Article and Find Full Text PDF

Staphylococcus aureus is a major human pathogen that is resistant to numerous antibiotics in clinical use. We found two nonribosomal peptide secondary metabolites--the aureusimines, made by S. aureus--that are not antibiotics, but function as regulators of virulence factor expression and are necessary for productive infections.

View Article and Find Full Text PDF

The tremendous success of Staphylococcus aureus as a pathogen is due to the controlled expression of a diverse array of virulence factors. The effects of host environments on the expression of virulence factors and the mechanisms by which S. aureus adapts to colonize distinct host tissues are largely unknown.

View Article and Find Full Text PDF

Iron is frequently a growth-limiting nutrient due to its propensity to interact with oxygen to form insoluble precipitates and, therefore, biological systems have evolved specialized uptake mechanisms to obtain this essential nutrient. Many pathogenic bacteria are capable of obtaining stringently sequestered iron from animal hosts by one or both of the following mechanisms: extraction of heme from host erythrocyte and serum hemoproteins, or through the use of high affinity, iron-scavenging molecules termed siderophores. This review summarizes our current knowledge of siderophore-mediated iron acquisition systems in the genus Staphylococcus.

View Article and Find Full Text PDF

Siderophores are iron-scavenging molecules produced by many microbes. In general, they are synthesized using either non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) pathways. Staphylococcus aureus produces siderophores, of which the structures of staphyloferrin A and staphyloferrin B are known.

View Article and Find Full Text PDF

Iron is critical for virtually all forms of life. The production of high-affinity iron chelators, siderophores, and the subsequent uptake of iron-siderophore complexes are a common strategy employed by microorganisms to acquire iron. Staphylococcus aureus produces siderophores but genetic information underlying their synthesis and transport is limited.

View Article and Find Full Text PDF

Background: Early upregulation of receptor-interacting protein-2 (RIP2) expression during peritoneal dialysis (PD)-associated peritonitis correlates with a favorable clinical outcome, while failure to upregulate RIP2 correlates with a protracted course. We noticed that patients who do not upregulate RIP2 during PD-associated peritonitis have more peritoneal macrophages during the early phase of infection.

Methods: To study the mechanism behind this observation, we examined the role of RIP2 in the immune response to bacterial challenge in a mouse model of acute peritonitis.

View Article and Find Full Text PDF