We experimentally and numerically investigate flat supercontinuum generation in gas-filled anti-resonant guiding hollow-core photonic crystal fiber. By comparing results obtained with either argon or nitrogen we determine the role of the rotational Raman response in the supercontinuum formation. When using argon, a supercontinuum extending from 350 nm to 2 µm is generated through modulational instability.
View Article and Find Full Text PDFWe report the flexible on-target delivery of 800 nm wavelength, 5 GW peak power, 40 fs duration laser pulses through an evacuated and tightly coiled 10 m long hollow-core nested anti-resonant fiber by positively chirping the input pulses to compensate for the anomalous dispersion of the fiber. Near-transform-limited output pulses with high beam quality and a guided peak intensity of 3 PW/cm were achieved by suppressing plasma effects in the residual gas by pre-pumping the fiber with laser pulses after evacuation. This appears to cause a long-term removal of molecules from the fiber core.
View Article and Find Full Text PDFWe investigate soliton self-compression and photoionization effects in an argon-filled antiresonant hollow-core photonic crystal fiber pumped with a commercial Yb:KGW laser. Before the onset of photoionization, we demonstrate self-compression of our 220 fs pump laser to 13 fs in a single and compact stage. By using the plasma driven soliton self-frequency blueshift, we also demonstrate a tunable source from 1030 to ∼700 nm.
View Article and Find Full Text PDFWe experimentally demonstrate the efficient generation of circularly polarized pulses tunable from the vacuum to deep ultraviolet (160-380 nm) through resonant dispersive wave emission from optical solitons in a gas-filled hollow capillary fiber. In the deep ultraviolet, we measure up to 13 µJ of pulse energy, and from numerical simulations, we estimate the shortest output pulse duration to be 8.5 fs.
View Article and Find Full Text PDFBackground: Elevated plantar pressures represent a significant risk factor for neuropathic diabetic foot (NDF) ulceration. Foot offloading, through custom-made insoles, is essential for prevention and healing of NDF ulcerations. Objective quantitative evaluation to design custom-made insoles is not a standard method.
View Article and Find Full Text PDFWe demonstrate an efficient scheme for the generation of broadband, high-energy, circularly polarized femtosecond laser pulses in the deep ultraviolet through seeded degenerate four-wave mixing in stretched gas-filled hollow capillary fibers. Pumping and seeding with circularly polarized 35 fs pulses centered at 400 nm and 800 nm, respectively, we generate idler pulses centered at 266 nm with 27 µJ of energy and over 95% spectrally averaged ellipticity. Even higher idler energies and broad spectra (27 nm bandwidth) can be obtained at the cost of reduced ellipticity.
View Article and Find Full Text PDFResonant dispersive wave (RDW) emission in gas-filled hollow waveguides is a powerful technique for the generation of bright few-femtosecond laser pulses from the vacuum ultraviolet to the near infrared. Here, we investigate deep-ultraviolet RDW emission in a hollow capillary fiber filled with a longitudinal gas pressure gradient. We obtain broadly similar emission to the constant-pressure case by applying a surprisingly simple scaling rule for the gas pressure and study the energy-dependent dispersive wave spectrum in detail using simulations.
View Article and Find Full Text PDFWe report on a highly efficient experimental scheme for the generation of deep-ultraviolet (UV) ultrashort light pulses using four-wave mixing in gas-filled kagomé-style photonic crystal fiber. By pumping with ultrashort, few microjoule pulses centered at 400 nm, we generate an idler pulse at 266 nm and amplify a seeded signal at 800 nm. We achieve remarkably high pump-to-idler energy conversion efficiencies of up to 38%.
View Article and Find Full Text PDFWe demonstrate high-energy resonant dispersive-wave emission in the deep ultraviolet (218 to 375 nm) from optical solitons in short (15 to 34 cm) hollow capillary fibers. This down-scaling in length compared to previous results in capillaries is achieved by using small core diameters (100 and 150 μm) and pumping with 6.3 fs pulses at 800 nm.
View Article and Find Full Text PDFWe demonstrate, for the first time, the application of rare-gas-filled hollow-core photonic crystal fibers (HC-PCFs) as tunable ultraviolet light sources in femtosecond pump-probe spectroscopy. A critical requirement here is excellent output stability over extended periods of data acquisition, and we show this can be readily achieved. The time-resolved photoelectron imaging technique reveals nonadiabatic dynamical processes operating on three distinct time scales in the styrene molecule following excitation over the 242-258 nm region.
View Article and Find Full Text PDFRaman effect in gases can generate an extremely long-living wave of coherence that can lead to the establishment of an almost perfect temporal periodic variation of the medium refractive index. We show theoretically and numerically that the equations, regulate the pulse propagation in hollow-core photonic crystal fibers filled by Raman-active gas, are exactly identical to a classical problem in quantum condensed matter physics - but with the role of space and time reversed - namely an electron in a periodic potential subject to a constant electric field. We are therefore able to infer the existence of Wannier-Stark ladders, Bloch oscillations, and Zener tunneling, phenomena that are normally associated with condensed matter physics, using purely optical means.
View Article and Find Full Text PDF