Understanding the collective dynamics behind the success of ideas, products, behaviors, and social actors is critical for decision-making across diverse contexts, including hiring, funding, career choices, and the design of interventions for social change. Methodological advances and the increasing availability of big data now allow for a broader and deeper understanding of the key facets of success. Recent studies unveil regularities beneath the collective dynamics of success, pinpoint underlying mechanisms, and even enable predictions of success across diverse domains, including science, technology, business, and the arts.
View Article and Find Full Text PDFTraditional models of human brain activity often represent it as a network of pairwise interactions between brain regions. Going beyond this limitation, recent approaches have been proposed to infer higher-order interactions from temporal brain signals involving three or more regions. However, to this day it remains unclear whether methods based on inferred higher-order interactions outperform traditional pairwise ones for the analysis of fMRI data.
View Article and Find Full Text PDFA key challenge of nonlinear dynamics and network science is to understand how higher-order interactions influence collective dynamics. Although many studies have approached this question through linear stability analysis, less is known about how higher-order interactions shape the global organization of different states. Here, we shed light on this issue by analyzing the rich patterns supported by identical Kuramoto oscillators on hypergraphs.
View Article and Find Full Text PDFAlthough higher-order interactions are known to affect the typical state of dynamical processes giving rise to new collective behavior, how they drive the emergence of rare events and fluctuations is still an open problem. We investigate how fluctuations of a dynamical quantity of a random walk exploring a higher-order network arise over time. In the quenched case, where the hypergraph structure is fixed, through large deviation theory we show that the appearance of rare events is hampered in nodes with many higher-order interactions, and promoted elsewhere.
View Article and Find Full Text PDFThe emergence of collective cooperation in competitive environments is a well-known phenomenon in biology, economics, and social systems. While most evolutionary game models focus on the evolution of strategies for a fixed game, how strategic decisions coevolve with the environment has so far mostly been overlooked. Here, we consider a game selection model where not only the strategies but also the game can change over time following evolutionary principles.
View Article and Find Full Text PDFAdvancements in technology have recently allowed us to collect and analyse large-scale fine-grained data about human performance, drastically changing the way we approach sports. Here, we provide the first comprehensive analysis of individual and team performance in One-Day International cricket, one of the most popular sports in the world. We investigate temporal patterns of individual success by quantifying the location of the best performance of a player and find that they can happen at any time in their career, surrounded by a burst of comparable top performances.
View Article and Find Full Text PDFMany real-world complex systems are characterized by interactions in groups that change in time. Current temporal network approaches, however, are unable to describe group dynamics, as they are based on pairwise interactions only. Here, we use time-varying hypergraphs to describe such systems, and we introduce a framework based on higher-order correlations to characterize their temporal organization.
View Article and Find Full Text PDFUnderstanding how cooperative behaviors can emerge from competitive interactions is an open problem in biology and social sciences. While interactions are usually modeled as pairwise networks, the units of many real-world systems can also interact in groups of three or more. Here, we introduce a general framework to extend pairwise games to higher-order networks.
View Article and Find Full Text PDFIn recent years hypergraphs have emerged as a powerful tool to study systems with multibody interactions which cannot be trivially reduced to pairs. While highly structured methods to generate synthetic data have proved fundamental for the standardized evaluation of algorithms and the statistical study of real-world networked data, these are scarcely available in the context of hypergraphs. Here we propose a flexible and efficient framework for the generation of hypergraphs with many nodes and large hyperedges, which allows specifying general community structures and tune different local statistics.
View Article and Find Full Text PDFMany complex systems that exhibit temporal nonpairwise interactions can be represented by means of generative higher-order network models. Here, we propose a hidden variable formalism to analytically characterize a general class of higher-order network models. We apply our framework to a temporal higher-order activity-driven model, providing analytical expressions for the main topological properties of the time-integrated hypergraphs, depending on the integration time and the activity distributions characterizing the model.
View Article and Find Full Text PDFNon-pharmaceutical measures such as preventive quarantines, remote working, school and workplace closures, lockdowns, etc. have shown effectiveness from an epidemic control perspective; however, they have also significant negative consequences on social life and relationships, work routines and community engagement. In particular, complex ideas, work and school collaborations, innovative discoveries and resilient norms formation and maintenance, which often require face-to-face interactions of two or more parties to be developed and synergically coordinated, are particularly affected.
View Article and Find Full Text PDFEcological and genetic factors have influenced the composition of the human microbiome during our evolutionary history. We analysed the oral microbiota of the Agta, a hunter-gatherer population where some members have adopted an agricultural diet. We show that age is the strongest factor modulating the microbiome, probably through immunosenescence since we identified an increase in the number of species classified as pathogens with age.
View Article and Find Full Text PDFHere we investigate the effects of extensive sociality and mobility on the oral microbiome of 138 Agta hunter-gatherers from the Philippines. Our comparisons of microbiome composition showed that the Agta are more similar to Central African BaYaka hunter-gatherers than to neighbouring farmers. We also defined the Agta social microbiome as a set of 137 oral bacteria (only 7% of 1980 amplicon sequence variants) significantly influenced by social contact (quantified through wireless sensors of short-range interactions).
View Article and Find Full Text PDFHypergraphs, describing networks where interactions take place among any number of units, are a natural tool to model many real-world social and biological systems. Here, we propose a principled framework to model the organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlapping ground-truth partitions.
View Article and Find Full Text PDFHigher-order networks have emerged as a powerful framework to model complex systems and their collective behavior. Going beyond pairwise interactions, they encode structured relations among arbitrary numbers of units through representations such as simplicial complexes and hypergraphs. So far, the choice between simplicial complexes and hypergraphs has often been motivated by technical convenience.
View Article and Find Full Text PDFFrom sports to science, the recent availability of large-scale data has allowed to gain insights on the drivers of human innovation and success in a variety of domains. Here we quantify human performance in the popular game of chess by leveraging a very large dataset comprising of over 120 million games between almost 1 million players. We find that individuals encounter hot streaks of repeated success, longer for beginners than for expert players, and even longer cold streaks of unsatisfying performance.
View Article and Find Full Text PDFHypergraphs, encoding structured interactions among any number of system units, have recently proven a successful tool to describe many real-world biological and social networks. Here we propose a framework based on statistical inference to characterize the structural organization of hypergraphs. The method allows to infer missing hyperedges of any size in a principled way, and to jointly detect overlapping communities in presence of higher-order interactions.
View Article and Find Full Text PDFFrom sport and science production to everyday life, higher-level pursuits demand collaboration. Despite an increase in the number of data-driven studies on human behavior, the social dynamics of collaborative problem solving are still largely unexplored with network science and other computational and quantitative tools. Here we introduce escape rooms as a non-interventional and minimally biased social laboratory, which allows us to capture at a high resolution real-time communications in small project teams.
View Article and Find Full Text PDFFrom social interactions to the human brain, higher-order networks are key to describe the underlying network geometry and topology of many complex systems. While it is well known that network structure strongly affects its function, the role that network topology and geometry has on the emerging dynamical properties of higher-order networks is yet to be clarified. In this perspective, the spectral dimension plays a key role since it determines the effective dimension for diffusion processes on a network.
View Article and Find Full Text PDFHuman social interactions in local settings can be experimentally detected by recording the physical proximity and orientation of people. Such interactions, approximating face-to-face communications, can be effectively represented as time varying social networks with links being unceasingly created and destroyed over time. Traditional analyses of temporal networks have addressed mostly pairwise interactions, where links describe dyadic connections among individuals.
View Article and Find Full Text PDFUrban transportation networks, from pavements and bicycle paths to streets and railways, provide the backbone for movement and socioeconomic life in cities. To make urban transport sustainable, cities are increasingly investing to develop their bicycle networks. However, it is yet unclear how to extend them comprehensively and effectively given a limited budget.
View Article and Find Full Text PDFWe live and cooperate in networks. However, links in networks only allow for pairwise interactions, thus making the framework suitable for dyadic games, but not for games that are played in larger groups. Here, we study the evolutionary dynamics of a public goods game in social systems with higher-order interactions.
View Article and Find Full Text PDF