The transition-metal dichalcogenide VSe exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe using ultrafast pump-probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity.
View Article and Find Full Text PDF