Further increasing the critical temperature and/or decreasing the stabilized pressure are the general hopes for the hydride superconductors. Inspired by the low stabilized pressure associated with Ce 4f electrons in superconducting cerium superhydride and the high critical temperature in yttrium superhydride, we carry out seven independent runs to synthesize yttrium-cerium alloy hydrides. The synthetic process is examined by the Raman scattering and X-ray diffraction measurements.
View Article and Find Full Text PDFThere is an ever increasing interest in studying dynamic-pressure dependent phenomena utilizing dynamic Diamond Anvil Cells (dDACs), devices capable of a highly controlled rate of compression. Here, we characterize and compare the compression rate of dDACs in which the compression is actuated via three different methods: (1) stepper motor (S-dDAC), (2) gas membrane (M-dDAC), and (3) piezoactuator (P-dDAC). The compression rates of these different types of dDAC were determined solely on millisecond time-resolved R-line fluorescence of a ruby sphere located within the sample chamber.
View Article and Find Full Text PDFWe report here the pressure-induced amorphization and reversible structural transformation between two amorphous forms of SO: molecular amorphous and polymeric amorphous, with the transition found at 26 GPa over a broad temperature regime, 77 K to 300 K. The transformation was observed by both Raman spectroscopy and X-ray diffraction in a diamond anvil cell. The results were corroborated by ab initio molecular dynamics simulations, where both forward and reverse transitions were detected, opening a window to detailed analysis of the respective local structures.
View Article and Find Full Text PDF