Torque teno sus virus k2a (TTSuVk2a) is a member of the family Anelloviridae that can establish persistent infections in both domestic pigs and wild boars. Its association with diseases has not been precisely elucidated, and it is often considered only as a commensal virus. This infectious agent has been reported in herds throughout the world.
View Article and Find Full Text PDFWild boars can act as a reservoir of pathogenic viruses that affect the pig industry. Here, we assessed the presence of porcine circovirus 2, porcine parvovirus 1, and torque teno sus virus k2a in wild boars in northeastern Patagonia (Argentina). Total DNA was extracted from the tonsils of 27 animals (collected between early 2016 and mid-2019) and used to prepare sample pools, which were subjected to viral detection through two-round PCR assays.
View Article and Find Full Text PDFPorcine cytomegalovirus (PCMV) is a recognized pathogen of domestic swine that is widely distributed around the world. PCMV is the etiological agent of inclusion body rhinitis and has also been associated with other diseases that cause substantial losses in swine production. Wild boar populations can act as reservoirs of numerous infectious agents that affect pig livestock, including PCMV.
View Article and Find Full Text PDFDengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns.
View Article and Find Full Text PDFUnlabelled: The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world.
View Article and Find Full Text PDFUnlabelled: Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly.
View Article and Find Full Text PDFDengue viruses cause the most important human viral disease transmitted by mosquitoes. In recent years, a great deal has been learned about molecular details of dengue virus genome replication; however, little is known about genome encapsidation and the functions of the viral capsid protein. During infection, dengue virus capsid progressively accumulates around lipid droplets (LDs) by an unknown mechanism.
View Article and Find Full Text PDFThe HIV-1 vif gene encodes for an accessory protein that is central for virus replication due mainly to its capacity to counteract the antiviral action of host APOBEC3 restriction factors. In order to evaluate whether HIV-1 vif alterations account for a delayed progression to AIDS in children infected perinatally, the vif genes from a group of 11 patients who exhibited an extremely slow disease progression (slow progressors) were studied by direct sequencing. In addition, the vif genes from a group of 93 children with typical disease progression (typical progressors) were analyzed for comparison.
View Article and Find Full Text PDFThe APOBEC3 proteins are cytidine deaminases that can introduce G→A mutations in the HIV-1 plus DNA strand. This editing process may inhibit virus replication through lethal mutagenesis (hypermutation), but could also contribute to viral diversification leading to the emergence of escape forms. The HIV-1 Vif protein has the capacity to counteract APOBEC3 factors by recruiting a CUL5-based ubiquitin ligase complex that determines their proteasomal degradation.
View Article and Find Full Text PDFThe APOBEC3G protein is a restriction factor that can inhibit the replication of HIV-1. The virus has the capacity to counteract this antiviral activity through the expression of the Vif accessory protein, which recruits a CUL5-based ubiquitin ligase complex that determines APOBEC3G proteasomal degradation. In this work we evaluated in a large pediatric cohort (i) whether single nucleotide polymorphisms of APOBEC3G and CUL5 genes (APOBEC3G H186R, APOBEC3G C40693T and CUL5 SNP6) can alter the risk of HIV-1 vertical transmission and/or the rate of progression to AIDS, (ii) the effect of HIV-1 Vif variants on the clinical course of disease, and (iii) whether the patient genotype for the studied polymorphisms could have an impact on Vif characteristics.
View Article and Find Full Text PDF