Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression.
View Article and Find Full Text PDFAdvanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells.
View Article and Find Full Text PDFModifying biological agents with polymers such as polyethylene glycol (PEG) has demonstrated clinical benefits; however, post-market surveillance of PEGylated derivatives has revealed PEG-associated toxicity issues, prompting the search for alternatives. We explore how conjugating a poly-l-glutamic acid (PGA) to an anti-insulin growth factor 1 receptor antibody (AVE1642) modulates the bio-nano interface and anti-tumor activity in preclinical prostate cancer models. Native and PGA-modified AVE1642 display similar anti-tumor activity in vitro; however, AVE1642 prompts IGF-1R internalization while PGA conjugation prompts higher affinity IGF-1R binding, thereby inhibiting IGF-1R internalization and altering cell trafficking.
View Article and Find Full Text PDFNanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLac) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM).
View Article and Find Full Text PDFPolymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLac) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αβ integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically.
View Article and Find Full Text PDFCancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles.
View Article and Find Full Text PDFActivated hepatic stellate cells (aHSCs) are the main orchestrators of the fibrotic cascade in inflamed livers, with transforming growth factor-beta (TGF-β) being the most potent pro-fibrotic cytokine. Hence, aHSCs serve as interesting therapeutic targets. However, drug delivery to aHSCs is hindered by excessive collagen deposition in the extracellular matrix (ECM) and capillarization of liver sinusoids.
View Article and Find Full Text PDFRecent advances in the field of bioprinting have led to the development of perfusable complex structures. However, most of the existing printed vascular channels lack the composition or key structural and physiological features of natural blood vessels or they make use of more easily printable but less biocompatible hydrogels. Here, we use a drop-on-demand bioprinting technique to generate in vitro blood vessel models, consisting of a continuous endothelium imitating the tunica intima, an elastic smooth muscle cell layer mimicking the tunica media, and a surrounding fibrous and collagenous matrix of fibroblasts mimicking the tunica adventitia.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) is the deadliest form of breast cancer and its successful treatment critically depends on early diagnosis and therapy. The multi-compartment protein p32 is overexpressed and present at cell surfaces in a variety of tumors, including TNBC, specifically in the malignant cells and endothelial cells, and in macrophages localized in hypoxic areas of the tumor. Herein we used polyethylene glycol-polycaprolactone polymersomes that were affinity targeted with the p32-binding tumor penetrating peptide LinTT1 (AKRGARSTA) for imaging of TNBC lesions.
View Article and Find Full Text PDFUltrasound (US) is one of the most frequently used imaging methods in the clinic. The broad spectrum of its applications can be increased by the use of gas-filled microbubbles (MB) as ultrasound contrast agents (UCA). In recent years, also nanoscale UCA like nanobubbles (NB), echogenic liposomes (ELIP) and nanodroplets have been developed, which in contrast to MB, are able to extravasate from the vessels into the tissue.
View Article and Find Full Text PDF