Publications by authors named "Federica Zaninotto"

The hepatic iron regulator hormone hepcidin consists, in its mature form, of 25 amino acids, but two other isoforms, hepcidin-20 and hepcidin-22, have been reported, whose biological meaning remains poorly understood. We evaluated hepcidin isoforms in sera from 57 control and 54 chronic haemodialysis patients using a quantitative proteomic approach based on SELDI-TOF-MS. Patients had elevated serum levels of both hepcidin-25 and hepcidin-20 as compared to controls (geometric means: 7.

View Article and Find Full Text PDF

Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions, mimicked by the combined action of LPS and IFN-gamma (M1 polarization). However, macrophages can undergo an alternative type of activation stimulated by Th2 cytokines, and acquire a role in cell growth and tissue repair control (M2 polarization). We characterized the expression of genes related to iron homeostasis in fully differentiated unpolarized (M0), M1 and M2 human macrophages.

View Article and Find Full Text PDF

Hepcidin, a liver peptide hormone, is the central regulator of iron homeostasis. Hepcidin synthesis is modulated by iron stores, so that iron repletion increases its levels to prevent pathological overload, while iron deficiency strongly inhibits hepcidin to allow an increase in iron absorption from duodenal cells. The emerging pivotal role of hepcidin in iron homeostasis, along with its important links with basic pathways like inflammation, makes the availability of an accurate hepcidin assay as a potentially powerful investigative tool to improve our understanding as well as our diagnostic/prognostic capabilities in many human diseases.

View Article and Find Full Text PDF

Background: Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events.

View Article and Find Full Text PDF

Nitric oxide (NO) is a free radical product of cell metabolism that plays diverse and important roles in the regulation of cellular function. S-Nitrosylation is emerging as a specific and fundamental posttranslational protein modification for the transduction of NO bioactivity, but very little is known about its physiological functions in plants. We investigated the molecular mechanism for S-nitrosylation of peroxiredoxin II E (PrxII E) from Arabidopsis thaliana and found that this posttranslational modification inhibits the hydroperoxide-reducing peroxidase activity of PrxII E, thus revealing a novel regulatory mechanism for peroxiredoxins.

View Article and Find Full Text PDF