Activated forms of the platelet derived growth factor receptor alpha (PDGFRα) have been described in various tumors, including FIP1L1-PDGFRα in patients with myeloproliferative diseases associated with hypereosinophilia and the PDGFRα(D842V) mutant in gastrointestinal stromal tumors and inflammatory fibroid polyps. To gain a better insight into the signal transduction mechanisms of PDGFRα oncogenes, we mutated twelve potentially phosphorylated tyrosine residues of FIP1L1-PDGFRα and identified three mutations that affected cell proliferation. In particular, mutation of tyrosine 720 in FIP1L1-PDGFRα or PDGFRα(D842V) inhibited cell growth and blocked ERK signaling in Ba/F3 cells.
View Article and Find Full Text PDFA large number of alterations in genes encoding receptor tyrosine kinase (RTK), namely FLT3, c-KIT, platelet-derived growth factor (PDGF) receptors, fibroblast growth factor (FGF) receptors, and the anaplastic large cell lymphoma kinase (ALK), have been found in hematopoietic malignancies. They have drawn much attention after the development of tyrosine kinase inhibitors. RTK gene alterations include point mutations and gene fusions that result from chromosomal rearrangements.
View Article and Find Full Text PDFDeciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations.
View Article and Find Full Text PDFThe fusion of TEL with platelet-derived growth factor receptor (PDGFR) beta (TPbeta) is found in a subset of patients with atypical myeloid neoplasms associated with eosinophilia and is the archetype of a larger group of hybrid receptors that are produced by rearrangements of PDGFR genes. TPbeta is activated by oligomerization mediated by the pointed domain of TEL/ETV6, leading to constitutive activation of the PDGFRbeta kinase domain. The receptor transmembrane (TM) domain is retained in TPbeta and in most of the described PDGFRbeta hybrids.
View Article and Find Full Text PDFGrowth factors of the PDGF and FGF families act through receptor tyrosine kinases. These receptors can be activated by chromosomal rearrangements in myeloid neoplasms associated with hypereosinophilia. We identified a new fusion gene between KANK1 and PDGFRbeta in a patient with thrombocythemia.
View Article and Find Full Text PDFBackground: Chimeric oncogenes encoding constitutively active protein tyrosine kinases are associated with chronic myeloid neoplasms. TEL-PDGFRbeta (TPbeta, also called ETV6-PDGFRB) is a hybrid protein produced by the t(5;12) translocation, FIP1L1-PDGFRalpha (FPalpha) results from a deletion on chromosome 4q12 and ZNF198-FGFR1 is created by the t(8;13) translocation. These fusion proteins are found in patients with myeloid neoplasms associated with eosinophilia.
View Article and Find Full Text PDF