The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid (PLA), overcoming the environmental drawbacks of conventional methods that mostly rely on toxic solvents and catalysts. The functionalized carbon black (f-CB) was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and thermogravimetric analysis (TGA) to confirm the successful modification.
View Article and Find Full Text PDFIn this paper, we use mono- and bimetallic complexes based on Earth-abundant, cheap and benign zinc for the synthesis of sustainable aliphatic and semi-aromatic polyesters. Tridentate and hexadentate aldimine-thioetherphenolate ligands were used to obtain the desired zinc complexes by the reaction of proligands with opportune equivalents of zinc bis[bis(trimethylsilyl)amide]. The obtained bimetallic complexes 1 and 2 and the monometallic complex 3 were used as catalysts in the Ring-Opening Polymerization (ROP) of landmark cyclic esters, such as ε-caprolactone and lactide, and in the Ring-Opening COPolymerization (ROCOP) of cyclohexene oxide and phthalic anhydride under different reaction conditions.
View Article and Find Full Text PDFChromium and aluminum complexes bearing salalen ligands were explored as catalysts for the ring-opening copolymerization (ROCOP) of succinic (SA), maleic (MA), and phthalic (PA) anhydrides with several epoxides: cyclohexene oxide (CHO), propylene oxide (PO), and limonene oxide (LO). Their behavior was compared with that of traditional salen chromium complexes. A completely alternating enchainment of monomers to provide pure polyesters was achieved with all the catalysts when used in combination with 4-(dimethylamino)pyridine (DMAP) as the cocatalyst.
View Article and Find Full Text PDFSalen, Salan, and Salalen chromium (III) chloride complexes have been investigated as catalysts for the ring-opening copolymerization reactions of cyclohexene oxide (CHO) with CO and of phthalic anhydride (PA) with limonene oxide (LO) or cyclohexene oxide (CHO). In the production of polycarbonates, the more flexible skeleton of salalen and salan ancillary ligands favors high activity. Differently, in the copolymerization of phthalic anhydride with the epoxides, the salen complex showed the best performance.
View Article and Find Full Text PDFA simple zinc catalyst showing high activity for both the synthesis of polylactide, a biodegradable polymer produced from renewable feedstock, and its degradation was described. In the ring-opening polymerization of lactides, the zinc catalyst showed one of the highest activities reported in the literature for reactions carried out in solution at room temperature. This excellent performance was preserved even when the process was performed under industrial conditions: at high temperature, in the absence of solvent, and by using a low catalyst loading with unpurified monomers.
View Article and Find Full Text PDFSynthesis of a new mononuclear magnesium complex with a bulky bis(alkoxide) ligand environment and its reactivity in ring-opening polymerization (ROP) and ring-opening copolymerization (ROCOP) are reported. Reaction of n-butyl-sec-butylmagnesium with two equivalents of HOR (HOR = di-tert-butylphenylmethanol, HOCtBu2Ph) formed Mg(OR)2(THF)2. The reaction proceeded via the Mg(OR)(sec-Bu)(THF)2 intermediate that was independently synthesized by treating n-butyl-sec-butylmagnesium with one equivalent of HOR.
View Article and Find Full Text PDF