In this work, the gas sensing properties of a single ZnO nanowire (NW) are investigated, simultaneously in terms of photoluminescence (PL) and photocurrent (PC) response to NO gas, with the purpose of giving new insights on the gas sensing mechanism of a single 1D ZnO nanostructure. A single ZnO NW sensing device was fabricated, characterized, and compared with a sample made of bundles of ZnO NWs. UV near-band-edge PL emission spectroscopy was carried out at room temperature and by lowering the temperature down to 77 K, which allows detection of resolved PL peaks related to different excitonic transition regions.
View Article and Find Full Text PDFThe ongoing Coronavirus crisis involved almost all sectors as well as museums, collections, and historical sites all over the world. Even though artworks do not have the ability to spread the virus, the pandemic officially introduced in cultural sites alcohol-based products (even by visitors for personal use) as these products were indicated to be able to inactivate the virus and were imposed by many local authorities. In this context, the need to conciliate the safety of the visitors and the protection of artworks represents a challenging task.
View Article and Find Full Text PDFThe electrical properties of an all-oxide core-shell ZnO-CoO nanorod heterojunction were studied in the dark and under UV-vis illumination. The contact potential difference and current distribution maps were obtained utilizing new methods in dynamic multifrequency atomic force microscopy (AFM) such as electrostatic and conductive intermodulation AFM. Light irradiation modified the electrical properties of the nanorod heterojunction.
View Article and Find Full Text PDFSelf-powered photodetectors operating in the UV-visible-NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p-n junction nanostructure, based on a ZnO-CoO core-shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV-visible-NIR p-n heterojunction photodetector. Ultrathin CoO films (in the range 1-15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays.
View Article and Find Full Text PDFPlasmonic Cu nanoparticles (NP) were successfully deposited on ZnO substrates by atomic layer deposition (ALD) owing to the Volmer-Weber island growth mode. An evolution from Cu NP to continuous Cu films was observed with an increasing number of ALD cycles. Real and imaginary parts of the NP dielectric functions, determined by spectroscopic ellipsometry using an effective medium approach, evidence a localized surface plasmon resonance that can be tuned between the visible and near-infrared ranges by controlling the interparticle spacing and size of the NP.
View Article and Find Full Text PDFArea-selective atomic layer deposition (AS-ALD) has attracted much attention in recent years due to the possibility of achieving accurate patterns in nanoscale features, which render this technique compatible with the continuous downscaling in nanoelectronic devices. The growth selectivity is achieved by starting from different materials and results (ideally) in localized growth of a single material. We propose here a new concept, more subtle and general, in which a property of the substrate is modulated to achieve localized growth of different materials.
View Article and Find Full Text PDFThis work reports the recent results achieved at the SENSOR Lab, Brescia (Italy) to address the selectivity of metal oxide based gas sensors. In particular, two main strategies are being developed for this purpose: (i) investigating different sensing mechanisms featuring different response spectra that may be potentially integrated in a single device; (ii) exploiting the electronic nose (EN) approach. The former has been addressed only recently and activities are mainly focused on determining the most suitable configuration and measurements to exploit the novel mechanism.
View Article and Find Full Text PDFA novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process.
View Article and Find Full Text PDFThe possibility of using novel architectures based on carbon nanotubes (CNTs) for a realistic monitoring of the air quality in an urban environment requires the capability to monitor concentrations of polluting gases in the low-ppb range. This limit has been so far virtually neglected, as most of the testing of new ammonia gas sensor devices based on CNTs is carried out above the ppm limit. In this paper, we present single-wall carbon nanotube (SWCNT) chemiresistor gas sensors operating at room temperature, displaying an enhanced sensitivity to NH3.
View Article and Find Full Text PDFA propyltrimethoxysilane-modified 2,2'-bipyridine ligand is synthesized and its acetonitrile solutions are used to prepare monolayers of the molecule on glass surfaces. Absorption and X-ray photoelectron spectroscopy demonstrate that the modified glass surfaces bind Cu(2+) with a 1:1 ratio with respect to the 2,2'-bipyridine moieties under the chosen preparative conditions, producing materials bearing 0.016 μg cm(-2) of copper.
View Article and Find Full Text PDFThe present study is focused on the implementation of a novel, low cost, urban grid of nanostructured chemresistor gas sensors for ammonia concentration ([NH(3)]) monitoring, with NH(3) being one of the main precursors of secondary fine particulate. Low-cost chemresistor gas sensors based on carbon nanotubes have been developed, their response to [NH(3)] in the 0.17-5.
View Article and Find Full Text PDF