Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFObesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.
View Article and Find Full Text PDFAdipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health.
View Article and Find Full Text PDFMuscle and adipose tissue (AT) are in mutual interaction through the integration of endocrine and biochemical signals, thus regulating whole-body function and physiology. Besides a traditional view of endocrine relationships that imply the release of cytokines and growth factors, it is becoming increasingly clear that a metabolic network involving metabolites as signal molecules also exists between the two tissues. By elevating the number and functionality of mitochondria, a key role in muscle metabolism is played by the master regulator of mitochondrial biogenesis peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), that induces a fiber type shift from glycolytic to oxidative myofibers.
View Article and Find Full Text PDFJ Basic Clin Physiol Pharmacol
July 2024
Mitochondria are highly plastic and dynamic organelles long known as the powerhouse of cellular bioenergetics, but also endowed with a critical role in stress responses and homeostasis maintenance, supporting and integrating activities across multifaced cellular processes. As a such, mitochondria dysfunctions are leading causes of a wide range of diseases and pathologies. Thyroid hormones (THs) are endocrine regulators of cellular metabolism, regulating intracellular nutrients fueling of sugars, amino acids and fatty acids.
View Article and Find Full Text PDF