The potential to control the rate of replacement of a biodegradable implant by a tissue would be advantageous. Here, we demonstrate that tissue invasion can be tuned through the novel approach of overlaying an enzymatically degradable hydrogel with an increasingly hydrolytically degradable environment. Poly(ethylene glycol) (PEG) hydrogels were formed from varying proportions of PEG-vinyl sulfone and PEG-acrylate (PEG-AC) monomers via a Michael-type addition reaction with a dithiol-containing matrix-metalloproteinase-susceptible peptide cross-linker.
View Article and Find Full Text PDFWe generated PSMi001-A and PSMi008-A hiPSC lines from two individuals belonging to a South African (SA) founder population in which the malignant KCNQ1-A341V mutation cosegregates with the Long QT Syndrome (LQTS) phenotype. PSMi001-A was derived from an asymptomatic KCNQ1-A341V mutation carrier, whereas PSMi008-A was derived from a healthy non-mutation carrier, heterozygous for the minor variant rs16847548 on the NOS1AP gene, associated with QT prolongation in the general population, and with a greater risk for cardiac arrest in the affected members of the SA founder population. The hiPSCs, generated using the Yamanaka's retroviruses, display pluripotent stem cell features and trilineage differentiation potential.
View Article and Find Full Text PDFThe achievement of optimal post-prandial (PP) glucose control in patients with type 1 diabetes (T1DM) remains a great challenge. This review summarizes the main factors contributing to PP glucose response and discusses the likely reasons why PP glucose control is rarely achieved in T1DM patients. The macronutrient composition of the meal, the rate of gastric emptying and premeal insulin administration are key factors affecting the PP glucose response in T1DM.
View Article and Find Full Text PDFWe generated human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a woman carrier of the heterozygous mutation c.568C > T p.R190W on the KCNQ1 gene.
View Article and Find Full Text PDFWe generated human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a male carrier of the heterozygous mutation c.1781 G > A p.R594Q on the KCNQ1 gene.
View Article and Find Full Text PDFWe generated human induced pluripotent stem cells (hiPSCs) from a symptomatic Long QT Syndrome (LQTS) type 1 patient, belonging to a South African (SA) founder population segregating the heterozygous mutation c.1022C > T p.A341V on the KCNQ1 gene.
View Article and Find Full Text PDFWe generated human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a 51years old female patient homozygous for the mutation c.535 G>A p.G179S on the KCNQ1 gene, causing a severe form of autosomal recessive Long QT Syndrome type 1 (AR-LQT1), not associated with deafness.
View Article and Find Full Text PDFWe report the generation of human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a female patient carrier of the two compound heterozygous mutations c.568 C>T p.R190W (maternal allele), and c.
View Article and Find Full Text PDFObjectives: to explore clinicians vision on hospital discharge records in order to identify useful elements to foster a more accurate compiling.
Design: qualitative research with phenomenological approach.
Setting And Participants: participants were selected through purposive sampling among clinicians of two hospitals located in Sardinia; the sample included 76 people (32 medical directors and 44 doctors in training).
Background: Mesenchymal stromal cells (MSC) repair infarcted hearts mainly through paracrine mechanisms. Low cell engraftment limits the release of soluble paracrine factors (SF) over time and, consequently, MSC efficacy. We tested whether a synthetic extracellular matrix mimic, a hydrogel containing heparin (H-HG), could ameliorate MSC engraftment and binding/release of SF, thus improving MSC therapy efficacy.
View Article and Find Full Text PDFMesenchymal stromal cells are excellent candidates for regenerative medicine since they are multipotent, easy to isolate, can be expanded to obtain clinically relevant numbers and are immunoprivileged. Stable genetic modification with viral vectors can improve mesenchymal stromal cell function and enhance their therapeutic potential. However, standard viral vectors achieve sub-optimal transduction efficiency with a single infection.
View Article and Find Full Text PDFBackground: Long QT Syndrome type 2 (LQT2) is caused by mutations in the KCNH2 gene that encodes for the α-subunit (hERG) of the ion channel conducting the rapid delayed rectifier potassium current (I). We have previously identified a disease causing mutation (IVS9-28A/G) in the branch point of the splicing of KCNH2 intron 9. However, the mechanism through which this mutation causes the disease is unknown.
View Article and Find Full Text PDFHeart diseases are a very common health problem in developed as well as developing countries. In particular, ischemic heart disease and heart failure represent a plague for the patients and for the society. Loss of cardiac tissue after myocardial infarction or dysfunctioning tissue in nonischemic cardiomyopathies may result in cardiac failure.
View Article and Find Full Text PDFThe paracrine properties of human amniotic membrane-derived mesenchymal stromal cells (hAMCs) have not been fully elucidated. The goal of the present study was to elucidate whether hAMCs can exert beneficial paracrine effects on infarcted rat hearts, in particular through cardioprotection and angiogenesis. Moreover, we aimed to identify the putative active paracrine mediators.
View Article and Find Full Text PDFSeveral studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance, and differentiation. In particular, it has been shown that miRNA133, miRNA1, and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation.
View Article and Find Full Text PDFRACK1 (Receptor for Activated C Kinase 1) is a scaffold protein for different kinases and membrane receptors. Previously, we characterized an age-dependent decline of RACK1 protein expression which could be counteracted with DHEA (dehydroepiandrosterone) [Corsini, E., et al.
View Article and Find Full Text PDF