Publications by authors named "Federica Marini"

Replication-dependent DNA double-strand breaks are harmful lesions preferentially repaired by homologous recombination (HR), a process that requires processing of DNA ends to allow RAD51-mediated strand invasion. End resection and subsequent repair are two intertwined processes, but the mechanism underlying their execution is still poorly appreciated. The WRN helicase is one of the crucial factors for end resection and is instrumental in selecting the proper repair pathway.

View Article and Find Full Text PDF

G-quadruplexes or G4s are non-canonical secondary structures of nucleic acids characterized by guanines arranged in stacked tetraplex arrays. Decades of research into these peculiar assemblies of DNA and RNA, fueled by the development and optimization of a vast array of techniques and assays, has resulted in a large amount of information regarding their structure, stability, localization, and biological significance in native systems. A plethora of articles have reported the roles of G-quadruplexes in multiple pathways across several species, ranging from gene expression regulation to RNA biogenesis and trafficking, DNA replication, and genome maintenance.

View Article and Find Full Text PDF

Protein Arginine (R)-methylation is a widespread protein post-translational modification (PTM) involved in the regulation of several cellular pathways, including RNA processing, signal transduction, DNA damage response, miRNA biogenesis, and translation. In recent years, thanks to biochemical and analytical developments, mass spectrometry (MS)-based proteomics has emerged as the most effective strategy to characterize the cellular methyl-proteome with single-site resolution. However, identifying and profiling in vivo protein R-methylation by MS remains challenging and error-prone, mainly due to the substoichiometric nature of this modification and the presence of various amino acid substitutions and chemical methyl-esterification of acidic residues that are isobaric to methylation.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based proteomics is currently the most successful approach to measure and compare peptides and proteins in a large variety of biological samples. Modern mass spectrometers, equipped with high-resolution analyzers, provide large amounts of data output. This is the case of shotgun/bottom-up proteomics, which consists in the enzymatic digestion of protein into peptides that are then measured by MS-instruments through a data dependent acquisition (DDA) mode.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is a highly heterogeneous disease with a high death rate mainly due to the metastatic spread. The expression of MDM4, a well-known p53-inhibitor, is positively associated with chemotherapy response and overall survival (OS) in EOC. However, the basis of this association remains elusive.

View Article and Find Full Text PDF

Leukodystrophies are a heterogeneous group of rare inherited disorders that mostly involve the white matter of the CNS. These conditions are characterized by primary glial cell and myelin sheath pathology of variable aetiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in five large consanguineous nuclear families allowed us to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness.

View Article and Find Full Text PDF

Background: Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody, nowadays used for tumour immunochemotherapy. This study aimed to label the conjugate DOTA-nimotuzumab with yttrium-90, in order to provide a β- emitting radioimmunoconjugate (Y-DOTA-nimotuzumab) potentially useful to assess the feasibility of a new radio-guided surgery approach.

Methods: The synthesis of 90Y-DOTA-nimotuzumab was performed in two days.

View Article and Find Full Text PDF

Background: In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer's disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology.

View Article and Find Full Text PDF

Mutations in gene are the most frequent cause of familial forms of Parkinson's disease (PD). This gene encodes Parkin, an E3 ubiquitin ligase involved in several cellular mechanisms, including mitophagy. Parkin loss-of-function is responsible for the cellular accumulation of damaged mitochondria, which in turn determines an increment of reactive oxygen species (ROS) levels, lower ATP production, and apoptosis activation.

View Article and Find Full Text PDF

In the framework of the Human Proteome Project initiative, we aim to improve mapping and characterization of mitochondrial proteome. In this work we implemented an experimental workflow, combining classical biochemical enrichments and mass spectrometry, to pursue a much deeper definition of mitochondrial proteome and possibly mine mitochondrial uncharacterized . We fractionated in two compartments mitochondria enriched from HeLa cells in order to annotate 4230 proteins in both fraction by means of a multiple-enzyme digestion (trypsin, chymotrypsin and Glu-C) followed by mass spectrometry analysis using a combination of Data Dependent Acquisition (DDA) and Data Independent Acquisition (DIA).

View Article and Find Full Text PDF

In all the eukaryotic cells, nucleolytic processing (resection) of a double strand DNA break (DSB) is a key step to channel the repair of the lesion toward the homologous recombination, at the expenses of the non-homologous end joining (NHEJ). The coordinated action of several nucleases and helicases generates 3' single strand (ss) DNA, which is covered by RPA and recombination factors. Molecular details of the process have been first dissected in the model organism .

View Article and Find Full Text PDF

A number of factors can trigger amyotrophic lateral sclerosis (ALS), although its precise pathogenesis is still uncertain. In a previous study done by us, poisonous liquoral levels of hydrogen sulphide (HS) in sporadic ALS patients were reported. In the same study very high concentrations of HS in the cerebral tissues of the familial ALS (fALS) model of the SOD1G93A mouse, were measured.

View Article and Find Full Text PDF

Mitochondria are undeniably the cell powerhouse, directly affecting cell survival and fate. Growing evidence suggest that mitochondrial protein repertoire affects metabolic activity and plays an important role in determining cell proliferation/differentiation or quiescence shift. Consequently, the bioenergetic status of a cell is associated with the quality and abundance of the mitochondrial populations and proteomes.

View Article and Find Full Text PDF

Cas9 endonuclease from S. pyogenes is widely used to induce controlled double strand breaks (DSB) at desired genomic loci for gene editing. Here, we describe a droplet digital PCR (ddPCR) method to precisely quantify the kinetic of formation and 5'-end nucleolytic processing of Cas9-induced DSB in different human cells lines.

View Article and Find Full Text PDF

The aim of the present work has been the mass spectrometry characterization of the Nimotuzumab (NIM) antibody chemically modified with the bifunctional chelating agent para-S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza cyclododecanetetraacetic acid (p-SCN-Bn-DOTA). The conjugate, upon labeling with the pure β-emitter Y could represent a promising candidate as radiotracer for an innovative radio-guided surgery (RGS) technique, developed and patented by researchers of our group, which uses a probe system for intraoperative detection of tumor residues exploiting the selective uptake of β-emitting tracers. The results reported in this study show that multiple DOTA molecules bind to lysine residues of both light and heavy chains of the antibody and, probably, some of them are linked to the variable region of antibody.

View Article and Find Full Text PDF

The nucleolytic degradation of the 5'-ending strand of a Double-Strand DNA break (DSB) is necessary to initiate homologous recombination to correctly repair the break. This process is called DNA end resection and it is finely regulated to prevent genome rearrangements. Here, we describe a protocol to quantify DSB resection rate by qPCR, which could be applied to every organisms whenever the break site and its flanking region sequences are known.

View Article and Find Full Text PDF

Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions.

View Article and Find Full Text PDF

Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research.

View Article and Find Full Text PDF

The DNA damage checkpoint pathway is activated in response to DNA lesions and replication stress to preserve genome integrity. However, hyper-activation of this surveillance system is detrimental to the cell, because it might prevent cell cycle re-start after repair, which may also lead to senescence. Here we show that the scaffold proteins Slx4 and Rtt107 limit checkpoint signalling at a persistent double-strand DNA break (DSB) and at uncapped telomeres.

View Article and Find Full Text PDF

The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5'-to-3' resection of Double-Strand DNA Breaks (DSBs). Extended 3' single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired.

View Article and Find Full Text PDF

UV light induces DNA lesions, which are removed by nucleotide excision repair (NER). Exonuclease 1 (EXO1) is highly conserved from yeast to human and is implicated in numerous DNA metabolic pathways, including repair, recombination, replication, and telomere maintenance. Here we show that hEXO1 is involved in the cellular response to UV irradiation in human cells.

View Article and Find Full Text PDF

Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure, increased cancer risk and hypersensitivity to DNA cross-linking agents, implying a role for this pathway in the maintenance of genomic stability. The central player of the FA pathway is the multi-subunit E3 ubiquitin ligase complex activated through a replication- and DNA damage-dependent mechanism. A consequence of the activation of the complex is the monoubiquitylation of FANCD2 and FANCI, late term effectors in the maintenance of genome integrity.

View Article and Find Full Text PDF

Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C.

View Article and Find Full Text PDF

DNA interstrand cross-links (ICLs) are highly cytotoxic DNA lesions hindering DNA replication and transcription. Whereas in bacteria and yeast the molecular mechanisms involved in ICL repair are genetically well dissected, the scenario in multicellular organisms remains unclear. Here, we report that the two new mus308 genes, polq-1 and hel-308 are involved in ICL repair in Caenorhabditis elegans.

View Article and Find Full Text PDF

Eukaryotic cells respond to a variety of DNA insults by triggering a common signal transduction cascade, known as checkpoint response, which temporarily halts cell-cycle progression. Although the main players involved in the cascade have been identified, there is still uncertainty about the nature of the structures that activate these surveillance mechanisms. To understand the role of nucleotide excision repair (NER) in checkpoint activation, we analyzed the UV-induced phosphorylation of the key checkpoint proteins Chk1 and p53, in primary fibroblasts from patients with xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy (TTD), or UV light-sensitive syndrome.

View Article and Find Full Text PDF