Publications by authors named "Federica Mangili"

Somatostatin receptor ligands (SRLs) with high affinity for somatostatin receptors 2 and 5 (SSTR2 and SSTR5) are poorly efficacious in NF-PitNETs, expressing high levels of SSTR3. ITF2984 is a pan-SSTR ligand with high affinity for SSTR3, able to induce SSTR3 activation and to exert antitumoral activity in the MENX rat model. The aim of this study was to test ITF2984's antiproliferative and proapoptotic effects in NF-PitNET primary cultured cells derived from surgically removed human tumors and to characterize their SSTR expression profile.

View Article and Find Full Text PDF

Background: Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical value is still limited.

View Article and Find Full Text PDF

Cell cytoskeleton proteins are involved in tumor pathogenesis, progression and pharmacological resistance. Filamin A (FLNA) is a large actin-binding protein with both structural and scaffold functions implicated in a variety of cellular processes, including migration, cell adhesion, differentiation, proliferation and transcription. The role of FLNA in cancers has been studied in multiple types of tumors.

View Article and Find Full Text PDF

The molecular events underlying the variable effectiveness of dopamine receptor type 2 (DRD2) agonists in pituitary neuroendocrine tumors (PitNETs) are not known. Besides the canonical pathway induced by DRD2 coupling with Gi proteins, the β-arrestin 2 pathway contributes to DRD2's antimitotic effects in PRL- and NF-PitNETs. A promising pharmacological strategy is the use of DRD2-biased agonists that selectively activate only one of these two pathways.

View Article and Find Full Text PDF

The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST) and 5 (SST) and regulates their expression and signaling in pituitary tumoral cells.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) inhibitor everolimus has been shown to display antiproliferative effects on a wide spectrum of tumors. studies demonstrated that everolimus inhibited pituitary neuroendocrine tumor (PitNET) cell growth in a subset of patients. Sensitivity to everolimus is reduced by an escape mechanism that increases AKT phosphorylation (p-AKT), leading to pro-survival pathway activation.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although males and females are at equivalent risk of infection, males are more prone to develop a higher severity disease, regardless of age. The factors that mediate susceptibility to SARS-CoV-2 and transmission are still under investigation.

View Article and Find Full Text PDF

Somatic mutations in the ubiquitin specific peptidase 8 (USP8) gene have been associated with higher levels of somatostatin (SS) receptor subtype 5 (SSTR5) in adrenocorticotroph hormone (ACTH)-secreting pituitary neuroendocrine tumors (PitNETs). However, a correlation between the USP8 mutational status and favourable responses to pasireotide, the somatostatin multi-receptor ligand acting especially on SSTR5, has not been investigated yet. Here, we studied the impact of USP8 mutations on pasireotide responsiveness in human and murine corticotroph tumor cells.

View Article and Find Full Text PDF

Cushing's Disease (CD) is a rare condition characterized by an overproduction of ACTH by an ACTH-secreting pituitary tumor, resulting in an excess of cortisol release by the adrenal glands. Somatic mutations in the deubiquitinases and , and in genes, have been reported in a subset of patients affected by CD. The aim of this study was to characterize the genetic profile of a cohort of 60 patients with ACTH-secreting tumors, searching for somatic mutations in , , and hotspot regions.

View Article and Find Full Text PDF

The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses.

View Article and Find Full Text PDF

Cushing's disease (CD) is a rare endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor. Pasireotide is the only pituitary-targeted drug approved for adult patients. Nevertheless, many side effects are encountered and curative therapy is still challenging.

View Article and Find Full Text PDF

The actin binding protein filamin A (FLNA) is required for somatostatin receptor 2 (SSTR2) and dopamine receptor 2 (DRD2) expression and signaling in GH- and PRL-secreting PitNETs, respectively, playing a role in tumor responsiveness to somatostatin receptors ligands and dopaminergic drugs. FLNA functions are regulated by several mechanisms, including phosphorylation. It has been shown that in GH-secreting PitNETs FLNA phosphorylation on Ser2152 (P-FLNA) switches FLNA function from a scaffold that allows SSTR2 signal transduction, to a signal termination protein that hampers SSTR2 antitumoral effects.

View Article and Find Full Text PDF

Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge.

View Article and Find Full Text PDF

Somatostatin receptor type 5 (SST5) represents the main pharmacological target in the treatment of adrenocorticotroph hormone (ACTH)-secreting tumors. However, molecular predictors of responsiveness to pasireotide require further investigation. The cytoskeleton protein filamin A (FLNA) modulates the responsiveness to somatostatin analogs (SSA) treatment in other types of pituitary tumors by regulating somatostatin receptor type 2 (SST2)/dopamine receptor type 2 (DRD2) expression and activity.

View Article and Find Full Text PDF

Dopamine receptor type 2 (DRD2) agonists are the first-choice treatment for prolactin-secreting pituitary tumors but are poorly effective in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). DRD2 reduces AKT phosphorylation in lactotrophs, but no data are available in NF-PitNETs. DRD2 effects on AKT are mediated by a β-arrestin 2-dependent mechanism in mouse striatum.

View Article and Find Full Text PDF

Although generally benign, pituitary tumors frequently show local invasiveness and resistance to pharmacological therapy. After the demonstration of the existence of pituitary gland stem cells, over the past decade, the presence of a stem cell subpopulation in pituitary tumors has been investigated, analogous to the cancer stem cell model developed for malignant tumors. This review recapitulates the experimental evidence supporting the existence of a population of stem-like cells in pituitary tumors, focusing on their potential role in tumor initiation, progression, recurrence and resistance to pharmacological therapy.

View Article and Find Full Text PDF

The high expression of somatostatin receptor 2 (SST2) in growth hormone (GH)-secreting tumors represents the rationale for the clinical use of somatostatin analogs (SSAs) in acromegaly. Recently, the cytoskeletal protein Filamin A (FLNA) has emerged as key modulator of the responsiveness of GH-secreting pituitary tumors to SSAs by regulating SST2 signaling and expression. The aim of this study was to explore FLNA involvement in SST2 intracellular trafficking in tumor somatotroph cells.

View Article and Find Full Text PDF

Pasireotide has been associated with tumor shrinkage in patients with Cushing's disease subjected to long term treatment. However, to date the implicated molecular mechanisms are poorly elucidated. Here, we tested pasireotide-mediated cytostatic and cytotoxic effects in ACTH-secreting primary tumor cultures and murine corticotroph tumor cell line, AtT-20 cells.

View Article and Find Full Text PDF