Publications by authors named "Federica Iannelli"

Background: Despite advancements in therapeutic approaches, including taxane-based chemotherapy and androgen receptor-targeting agents, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable tumor, highlighting the need for novel strategies that can target the complexities of this disease and bypass the development of drug resistance mechanisms. We previously demonstrated the synergistic antitumor interaction of valproic acid (VPA), an antiepileptic agent with histone deacetylase inhibitory activity, with the lipid-lowering drug simvastatin (SIM). This combination sensitizes mCRPC cells to docetaxel treatment both in vitro and in vivo by targeting the cancer stem cell compartment via mevalonate pathway/YAP axis modulation.

View Article and Find Full Text PDF
Article Synopsis
  • Metastatic pancreatic ductal adenocarcinoma (mPDAC) has a poor prognosis, leading researchers to explore the repurposing of existing drugs like valproic acid (VPA) and statins for potentially more effective treatments alongside standard chemotherapy.* -
  • The VESPA clinical trial is designed to investigate the combination of VPA and simvastatin (SIM) with gemcitabine/nab-paclitaxel in mPDAC patients, aiming to enhance treatment efficacy compared to chemotherapy alone.* -
  • The trial will enroll 240 patients across multiple centers, assessing outcomes like progression-free survival and overall survival, with a hypothesis that the combination therapy could extend progression-free survival from 6 to
View Article and Find Full Text PDF

We describe here the design and antitumor evaluation of benzofuroxan-based nitric oxide (NO)-donor hybrid derivatives targeting human carbonic anhydrases (hCAs) IX and XII. The most effective compounds, and , demonstrated potent dual action, exhibiting low nanomolar inhibition constants against hCA IX and significant NO release. Notably, compound showed significant antiproliferative effects against various cancer cell lines, particularly renal carcinoma A-498 cells.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) represents an unmet clinical need due to the very poor prognosis and the lack of effective therapy. Here we investigated the potential of domatinostat (4SC-202), a new class I histone deacetylase (HDAC) inhibitor, currently in clinical development, to sensitize PDAC to first line standard gemcitabine (G)/taxol (T) doublet chemotherapy treatment.

Methods: Synergistic anti-tumor effect of the combined treatment was assessed in PANC1, ASPC1 and PANC28 PDAC cell lines in vitro as well as on tumor spheroids and microtissues, by evaluating combination index (CI), apoptosis, clonogenic capability.

View Article and Find Full Text PDF

Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks.

View Article and Find Full Text PDF

Acquired resistance to platinum (Pt)-based therapies is an urgent unmet need in the management of epithelial ovarian cancer (EOC) patients. Here, we characterized by an unbiased proteomics method three isogenic EOC models of acquired Pt resistance (TOV-112D, OVSAHO, and MDAH-2774). Using this approach, we identified several differentially expressed proteins in Pt-resistant (Pt-res) compared to parental cells and the chaperone HSP90 as a central hub of these protein networks.

View Article and Find Full Text PDF

Background: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models.

Methods: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay.

View Article and Find Full Text PDF

Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index.

View Article and Find Full Text PDF

Background: Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway.

View Article and Find Full Text PDF

The 5-fluorouracil/cisplatin (5FU/CDDP) combination is one of the most widely used treatment options for several solid tumors. However, despite good anticancer responses, this regimen is often associated with high toxicity and treatment resistance. In our study, we evaluated whether the histone deacetylase inhibitor (HDACi), vorinostat, may induce synergistic antitumor and proapoptotic effects in combination with 5FU/CDDP in squamous cancer cell models.

View Article and Find Full Text PDF

Background: Modifications of lipid metabolism have been progressively accepted as a hallmark of tumor cells and in particular, an elevated lipogenesis has been described in various types of cancers.

Objective: Important or deregulated activity of the mevalonate pathway has been demonstrated in different tumors and a wide range of studies have suggested that tumor cells are more dependent on the unceasing availability of mevalonate pathway metabolites than their non-malignant complements.

Methods: This study provides an overview of the state of the art of statins treatment on human cancer.

View Article and Find Full Text PDF

Background: Protease activated receptor-1 (PAR1) is a G-coupled receptor activated by α-thrombin and other proteases. Several reports have demonstrated the PAR1 involvement in tumorigenesis and tumor progression. In order to investigate on potential use of PAR1 antagonists as antiproliferative agents.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2-Dimensional Differential InGel Electrophoresis (2-D DIGE) followed by Liquid Chromatography (LC)-tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression.

View Article and Find Full Text PDF

The alarming rate of failure of clinical trials is a major hurdle in cancer therapy that partly results from the inadequate use of in vitro tumor models for the screening of promising hits and leads in preclinical studies. 2D cultures of cancer cell lines that are primarily used for drug screening do not adequately recapitulate tumor microenvironment (TME) complexities compared with 3D cancer cell cultures and tumor-derived primary cell cultures. In this review, we focus on the potential use of in vitro tumor models that reproduce in vivo tumor complexities for effective drug selection in the preclinical stages of drug development.

View Article and Find Full Text PDF

Proteomic analysis identified differentially expressed proteins between zoledronic acid-resistant and aggressive DU145R80 prostate cancer (PCa) cells and their parental DU145 cells. Ingenuity Pathway Analysis (IPA) showed a strong relationship between the identified proteins within a network associated with cancer and with homogeneous cellular functions prevalently related with regulation of cell organization, movement and consistent with the smaller and reduced cell-cell contact morphology of DU145R80 cells. The identified proteins correlated in publically available human PCa genomic data with increased tumor expression and aggressiveness.

View Article and Find Full Text PDF