Publications by authors named "Federica Gibellini"

Background: Although mosaic variation has been known to cause disease for decades, high-throughput sequencing technologies with the analytical sensitivity to consistently detect variants at reduced allelic fractions have only recently emerged as routine clinical diagnostic tests. To date, few systematic analyses of mosaic variants detected by diagnostic exome sequencing for diverse clinical indications have been performed.

Methods: To investigate the frequency, type, allelic fraction, and phenotypic consequences of clinically relevant somatic mosaic single nucleotide variants (SNVs) and characteristics of the corresponding genes, we retrospectively queried reported mosaic variants from a cohort of ~ 12,000 samples submitted for clinical exome sequencing (ES) at Baylor Genetics.

View Article and Find Full Text PDF

Purpose: Germ-line testing for panels of cancer genes using next-generation sequencing is becoming more common in clinical care. We report our experience as a clinical laboratory testing both well-established, high-risk cancer genes (e.g.

View Article and Find Full Text PDF

Purpose: We report the diagnostic yield of whole-exome sequencing (WES) in 3,040 consecutive cases at a single clinical laboratory.

Methods: WES was performed for many different clinical indications and included the proband plus two or more family members in 76% of cases.

Results: The overall diagnostic yield of WES was 28.

View Article and Find Full Text PDF

PEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition.

View Article and Find Full Text PDF

The SATB2-associated syndrome (SAS) was recently proposed as a clinically recognizable syndrome that results from deleterious alterations of the SATB2 gene in humans. Although interstitial deletions at 2q33 encompassing SATB2, either alone or contiguously with other genes, have been reported before, there is limited literature regarding intragenic mutations of this gene and the resulting phenotype. We describe five patients in whom whole exome sequencing identified five unique de novo mutations in the SATB2 gene (one splice site, one frameshift, and three nonsense mutations).

View Article and Find Full Text PDF

Purpose: Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing.

View Article and Find Full Text PDF

The serine/threonine kinase Akt/PKB is a major signaling hub integrating metabolic, survival, growth, and cell cycle regulatory signals. The definition of the phospho-motif cipher driving phosphorylation by Akt led to the identification of hundreds of putative substrates, and it is therefore pivotal to identify those whose phosphorylation by Akt is of consequence to biological processes. The Lmna gene products lamin A/C and the lamin A precursor prelamin A are type V intermediate filament proteins forming a filamentous meshwork, the lamina, underneath the inner nuclear membrane, for nuclear envelope structures organization and interphase chromatin anchoring.

View Article and Find Full Text PDF

The upregulation of pteridine reductase (PTR1) is a major contributor to antifolate drug resistance in Leishmania spp., as it provides a salvage pathway that bypasses dihydrofolate reductase (DHFR) inhibition. The structure-based optimization of the PTR1 inhibitor methyl-1-[4-(2,4-diaminopteridin-6-ylmethylamino)benzoyl]piperidine-4-carboxylate (1) led to the synthesis of a focused compound library which showed significantly improved selectivity for the parasite's folate-dependent enzyme.

View Article and Find Full Text PDF

Purpose: Chronic lymphocytic leukemia (CLL), a malignancy of mature B cells, is incurable with chemotherapy. Signals from the microenvironment support leukemic cell survival and proliferation and may confer chemotherapy resistance. ON 01910.

View Article and Find Full Text PDF

Survival of chronic lymphocytic leukemia (CLL) cells in vivo is supported by the tissue microenvironment, which includes components of the extracellular matrix. Interactions between tumor cells and the extracellular matrix are in part mediated by CD44, whose principal ligand is hyaluronic acid. Here, we show that CD44 is more highly expressed on CLL cells of the clinically more progressive immunglobulin heavy chain variable gene (IGHV)-unmutated subtype than on cells of the IGHV-mutated type.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes, involves blood, bone marrow, and secondary lymphoid organs such as the lymph nodes (LN). A role of the tissue microenvironment in the pathogenesis of CLL is hypothesized based on in vitro observations, but its contribution in vivo remains ill-defined. To elucidate the effects of tumor-host interactions in vivo, we purified tumor cells from 24 treatment-naive patients.

View Article and Find Full Text PDF

The biological membranes of Trypanosoma brucei contain a complex array of phospholipids that are synthesized de novo from precursors obtained either directly from the host, or as catabolised endocytosed lipids. This paper describes the use of nanoflow electrospray tandem mass spectrometry and high resolution mass spectrometry in both positive and negative ion modes, allowing the identification of approximately 500 individual molecular phospholipids species from total lipid extracts of cultured bloodstream and procyclic form T. brucei.

View Article and Find Full Text PDF

The glycerophospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) account for greater than 50% of the total phospholipid species in eukaryotic membranes and thus play major roles in the structure and function of those membranes. In most eukaryotic cells, PC and PE are synthesized by an aminoalcoholphosphotransferase reaction, which uses sn-1,2-diradylglycerol and either CDP-choline or CDP-ethanolamine, respectively. This is the last step in a biosynthetic pathway known as the Kennedy pathway, so named after Eugene Kennedy who elucidated it over 50 years ago.

View Article and Find Full Text PDF

Background: In chronic lymphocytic leukemia lenalidomide causes striking immune activation, possibly leading to clearance of tumor cells. We conducted this study to investigate the mechanism of action of lenalidomide and the basis for its unique toxicities in chronic lymphocytic leukemia.

Design And Methods: Patients with relapsed chronic lymphocytic leukemia were treated with lenalidomide 20 mg (n=10) or 10 mg (n=8) daily for 3 weeks on a 6-week cycle.

View Article and Find Full Text PDF

Phosphatidylethanolamine (GPEtn), a major phospholipid component of trypanosome membranes, is synthesized de novo from ethanolamine through the Kennedy pathway. Here the composition of the GPEtn molecular species in the bloodstream form of Trypanosoma brucei is determined, along with new insights into phospholipid metabolism, by in vitro and in vivo characterization of a key enzyme of the Kennedy pathway, the cytosolic ethanolamine-phosphate cytidylyltransferase (TbECT). Gene knockout indicates that TbECT is essential for growth and survival, thus highlighting the importance of the Kennedy pathway for the pathogenic stage of the African trypanosome.

View Article and Find Full Text PDF

Objective: To investigate the role of perforin-mediated cell apoptosis in murine models of immune-mediated bone marrow (BM) failure.

Materials And Methods: We compared C57BL/6J (B6) mice carrying a perforin gene deletion (Prf(-/-)) with wild-type (WT) controls for cellular composition in lymphohematopoietic tissues. Lymph node (LN) cells from Prf(-/-) mice were coincubated with BM cells from B10-H2(b)/LilMcdJ (C.

View Article and Find Full Text PDF

Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (phosphatidylethanolamine) [corrected] and GPCho (phosphatidylcholine) [corrected] . Ethanolamine is also found as an integral component of the GPI (glycosylphosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocholine by ethanolamine and choline kinases via the Kennedy pathway.

View Article and Find Full Text PDF

Bortezomib is more active against mantle cell lymphoma (MCL) than against most other lymphoma subtypes. Nevertheless, up to half of patients with MCL have bortezomib resistant disease. Factors contributing to intrinsic resistance to bortezomib have not been determined.

View Article and Find Full Text PDF

Pteridine reductase (PTR1) is essential for salvage of pterins by parasitic trypanosomatids and is a target for the development of improved therapies. To identify inhibitors of Leishmania major and Trypanosoma cruzi PTR1, we combined a rapid-screening strategy using a folate-based library with structure-based design. Assays were carried out against folate-dependent enzymes including PTR1, dihydrofolate reductase (DHFR), and thymidylate synthase.

View Article and Find Full Text PDF

In aplastic anaemia, T cells have a central role in the pathophysiology of bone marrow destruction. This study showed that T cells from patients with aplastic anaemia expressed decreased T-cell receptor (TCR) zeta-chain protein and mRNA levels compared to healthy controls. Patients with decreased TCR zeta-chain showed an abnormal response in intracellular calcium following stimulation through the TCR.

View Article and Find Full Text PDF

Perforin is a cytolytic protein expressed mainly in activated cytotoxic lymphocytes and natural killer cells. Inherited perforin mutations account for 20% to 40% of familial hemophagocytic lymphohistiocytosis, a fatal disease of early childhood characterized by the absence of functional perforin. Aplastic anemia, the paradigm of immune-mediated bone marrow failure syndromes, is characterized by hematopoietic stem cell destruction by activated T cells and Th1 cytokines.

View Article and Find Full Text PDF

A gene expression signature of tumor proliferation rate in mantle cell lymphoma (MCL) is an overriding molecular predictor of the length of survival following diagnosis. Many strongly proliferative MCL tumors have exceptionally high cyclin D1 mRNA levels and preferentially express short cyclin D1 mRNA isoforms. We demonstrate here that these short mRNAs are cyclin D1a isoforms with truncated 3'UTRs, not alternatively spliced cyclin D1b mRNA isoforms.

View Article and Find Full Text PDF

The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.

View Article and Find Full Text PDF

The structure of Leishmania major pteridine reductase (PTR1) in complex with NADPH and the inhibitor 2,4,6-triaminoquinazoline (TAQ) has been solved in a new crystal form by molecular replacement and refined to 2.6 A resolution. The inhibitor mimics a fragment, the pterin head group, of the archetypal antifolate drug methotrexate (MTX) and exploits similar chemical features to bind in the PTR1 active site.

View Article and Find Full Text PDF