Publications by authors named "Federica Cermola"

Small molecules that can modulate or stabilize cell-cell interactions are valuable tools for investigating the impact of collective cell behavior on various biological processes such as development/morphogenesis, tissue regeneration and cancer progression. Recently, we showed that budesonide, a glucocorticoid widely used as an anti-asthmatic drug, is a potent regulator of stem cell pluripotency. Here we tested the effect of different budesonide derivatives and identified CHD-030498 as a more effective analogue of budesonide.

View Article and Find Full Text PDF

3D embryonic stem cell (ESC) aggregates self-organize into embryo-like structures named gastruloids that recapitulate the axial organization of post-implantation embryos. Crucial in this process is the symmetry-breaking event that leads to the emergence of asymmetry and spatially ordered structures from homogeneous cell aggregates. Here, we show that budesonide, a glucocorticoid drug widely used to treat asthma, prevents ESC aggregates to break symmetry.

View Article and Find Full Text PDF

The different states of mouse pluripotency described so far rely on a combination of molecular, phenotypic, and functional analysis. Embryonic Stem cells (ESCs) aggregated in suspension culture are able to form 3D embryo-like structures called gastruloids that mimic features of the gastrulation process. Recent findings indicate that gastruloid formation efficiency decreases as pluripotency progresses from naïve to primed state, and suggest that gastruloids formation may represent a functional assay to discriminate different states of mouse pluripotency.

View Article and Find Full Text PDF

Different states of pluripotency can be captured in vitro depending on the embryo stage from which they are derived and the culture conditions. Pluripotency is a continuum of different states between the two extremes of naïve embryonic stem cells (ESCs) and primed Epiblast Stem Cells (EpiSCs), which resemble the pre/peri- and post- implantation embryo, respectively. The transition from naïve to primed pluripotency can be induced by growing naïve ESCs in EpiSCs medium, containing bFGF and Activin.

View Article and Find Full Text PDF

Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); a neural metabotoxin associated with schizophrenia; a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; an epigenetic modifier able to promote DNA and histone hypermethylation; an inducer of proliferation of stem and tumor cells; and a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.

View Article and Find Full Text PDF

Floating spheroidal aggregates of mouse embryonic stem cells can develop into polarized/elongated organoids, namely gastruloids. We set up a high-performing assay to measure gastruloid formation efficiency (GFE), and found that GFE decreases as pluripotency progresses from naive (GFE ≥ 95%) to primed (GFE = 0) state. Specifically, we show that primed EpiSCs fail to generate proper cell aggregates, while early-primed EpiLCs aggregate but eventually fail to develop into elongated gastruloids.

View Article and Find Full Text PDF

Cell state transition (CST) occurs during embryo development and in adult life in response to different stimuli and is associated with extensive epigenetic remodeling. Beyond growth factors and signaling pathways, increasing evidence point to a crucial role of metabolic signals in this process. Indeed, since several epigenetic enzymes are sensitive to availability of specific metabolites, fluctuations in their levels may induce the epigenetic changes associated with CST.

View Article and Find Full Text PDF

Collagen prolyl hydroxylation (CPH), which is catalyzed by prolyl 4-hydroxylase (P4H), is the most prevalent posttranslational modification in humans and requires vitamin C (VitC). Here, we demonstrate that CPH acts as an epigenetic modulator of cell plasticity. Increased CPH induced global DNA/histone methylation in pluripotent stem and tumor cells and promoted cell state transition (CST).

View Article and Find Full Text PDF

Transcription factors and signaling molecules are well-known regulators of stem cell identity and behavior; however, increasing evidence indicates that environmental cues contribute to this complex network of stimuli, acting as crucial determinants of stem cell fate. l-Ascorbic acid (vitamin C (VitC)) has gained growing interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. Here, we review the main functions of VitC and its effects on stem cells, focusing on its activity as cofactor of Fe/KG dioxygenases, which regulate the epigenetic signatures, the redox status, and the extracellular matrix (ECM) composition, depending on the enzymes' subcellular localization.

View Article and Find Full Text PDF

Metabolites and cofactors are emerging as key regulators of cell plasticity and reprogramming, and their role in the control of pluripotency is just being discovered. Here we provide unprecedented evidence that embryonic stem cell (ESC) pluripotency relies on the relative levels of two physiological metabolites, namely ascorbic acid (vitamin C, VitC) and l-proline (l-Pro), which affect global DNA methylation, transcriptional profile, and energy metabolism. Specifically, while a high VitC/l-Pro ratio drives ESCs toward a naive state, the opposite condition (l-Pro excess) captures a fully reversible early primed pluripotent state, which depends on autocrine fibroblast growth factor and transforming growth factor β signaling pathways.

View Article and Find Full Text PDF