The perception and imagery of landmarks activate similar content-dependent brain areas, including occipital and temporo-medial brain regions. However, how these areas interact during visual perception and imagery of scenes, especially when recollecting their spatial location, remains unknown. Here, we combined functional magnetic resonance imaging (fMRI), resting-state functional connectivity (rs-fc), and effective connectivity to assess spontaneous fluctuations and task-induced modulation of signals among regions entailing scene-processing, the primary visual area and the hippocampus (HC), responsible for the retrieval of stored information.
View Article and Find Full Text PDFResearch on the contribution of the ipsilateral hemisphere to unilateral movements, and how it is mediated by transcallosal connections, has so far provided contradictory findings. By using dynamic causal modelling (DCM) and Parametric Empirical Bayes analyses applied to fMRI data, we sought to describe effective connectivity during pantomimed and imagined right-hand grasping within the grasping network, namely the anterior intraparietal sulcus, ventral and dorsal (PMd) premotor cortex, supplementary motor area and primary motor cortex (M1). The two-fold aim of the present work was to explore a) whether right and left parieto-frontal areas show similar connectivity couplings, and b) the interhemispheric dynamics between these regions across the two hemispheres.
View Article and Find Full Text PDFDespite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses.
View Article and Find Full Text PDFIt is commonly acknowledged that visual imagery and perception rely on the same content-dependent brain areas in the high-level visual cortex (HVC). However, the way in which our brain processes and organizes previous acquired knowledge to allow the generation of mental images is still a matter of debate. Here, we performed a representation similarity analysis of three previous fMRI experiments conducted in our laboratory to characterize the neural representation underlying imagery and perception of objects, buildings and faces and to disclose possible dissimilarities in the neural structure of such representations.
View Article and Find Full Text PDFThe parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses.
View Article and Find Full Text PDF